М.Л. Сургайло, П.Н. Соляник, В.А. Тараненко, Ю.С. Мащенко УДК 532.5.031

Моделирование двумерного течения грунтовых вод

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Описана модель течения грунтовых вод для двумерного случая. На основе модели безвихревого течения рассмотрены вопросы моделирования водоносного слоя с криволинейными границами и точечными источниками (насосами). Решение поставленной задачи выполнено методом конечных элементов с использованием L-координат для кубических треугольных элементов.

Ключевые слова: течение грунтовых вод, водоносный слой, кубический треугольный элемент, безвихревое течение, функции формы, пьезометрический напор.

Подземные воды широко используют в народном хозяйстве для водоснабжения городов и сел, промышленных предприятий, для орошения полей. В будущем их значение увеличится в связи с растущими потребностями населения и промышленности в чистой воде. Анализ течения грунтовых вод является важным аспектом в региональном планировании.

В настоящей работе моделирование течения грунтовых вод выполнено в предположении безвихревого течения [1 – 4]. Это предположение позволяет представить дифференциальное уравнение в частных производных для ограниченного водоносного слоя с течением в горизонтальной плоскости в следующем виде:

$$K_{xx}\frac{\partial^2 \varphi}{\partial x^2} + K_{yy}\frac{\partial^2 \varphi}{\partial y^2} + Q = 0, \qquad (1)$$

 K_{xx} и K_{yy} – коэффициенты фильтрации; где

> arphi – пьезометрический напор, измеряемый от нижней границы водоносного слоя:

Гр1 Гр2 H1⁴ Γn Гр1 `**Г**р2

Рис. 1. Схема водоносного слоя

На рис. 1 изображена схема регионального водоносного слоя со сторонами длиной 22650 и 17050 м.

Для однозначного решения дифференциального уравнения (1) необходимо выполнение граничных условий на границах водоносного слоя.

Считаем, что на границах Гр1 (см. рис. 1) просачивание воды в рассматриваемую область достаточно велико, чтобы поддерживать вдоль этих границ постоянное значение

$$\varphi = 200 \, \text{м}$$
. (2)

Границы Гр2 принимаем водонепроницаемыми. Для этих границ граничное условие можно записать следующим образом:

Q – потери воды.

$$K_{xx}\frac{\partial\varphi}{\partial x}l_x + K_{yy}\frac{\partial\varphi}{\partial y}l_y = 0, \qquad (3)$$

где l_x и l_y – направляющие косинусы.

Внутри этот региона содержится река (на рис. 1 под номером 2), и вода из реки просачивается в водоносный слой со скоростью 0.0003 м³/сут вдоль поверхности реки. Кроме того, в точках Н1 (15450, 6830) и Н2 (16480, 10930) расположены два насоса. Мощность этих насосов соответственно $P_1 = 900 \, {m}^3/cym$ и $P_2 = 800 \, {m}^3/cym$. Грунт исследуемого региона (на рис.1 под номером 1) состоит из песчаных пород среднезернистой глины. Коэффициенты фильтрации для данного грунта приняты равными $K_{xx} = 40 \, {m}/c$ и $K_{yy} = 20 \, {m}/c$.

Для определения линий равного пьезометрического напора в рассматриваемой задаче используем метод конечных элементов. Для построения модели двумерной дискретной области применяем треугольники. Причем, внутри каждого треугольника искомая функция φ интерполируется кубическим полиномом

$$\varphi = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x^2 + \alpha_5 xy + \alpha_6 y^2 + \alpha_7 x^3 + \alpha_8 x^2 y + \alpha_9 xy^2 + \alpha_{10} y^3.$$
(4)

При этом каждый треугольный элемент содержит десять узлов (рис. 2).

С вариационной точки зрения решение уравнение (1) с граничными условиями (2) и (3) эквивалентно отысканию минимума функционала

$$\chi = \int_{V} \frac{1}{2} \cdot \left[K_{xx} \cdot \left(\frac{\partial \varphi}{\partial x} \right)^2 + K_{yy} \cdot \left(\frac{\partial \varphi}{\partial y} \right)^2 - 2 \cdot Q \cdot \varphi \right] dV.$$
(5)

Перепишем функционал (5) в матричном виде

$$\chi = \int_{V} \left(\frac{1}{2} \{g\}^{T} [D] \{g\} - (2Q) \varphi \right) dV , \qquad (6)$$

где

$$\{g\} = \begin{cases} \frac{\partial \varphi}{\partial x} \\ \frac{\partial \varphi}{\partial y} \end{cases}, \quad [D] = \begin{bmatrix} K_{xx} & 0 \\ 0 & K_{yy} \end{bmatrix}.$$

Минимизация функционала (6) осуществляется на множестве узловых значений $\{\Phi\}$, при этом требуется выполнение соотношения

$$\frac{\partial \chi}{\partial \{\Phi\}} = \frac{\partial}{\partial \{\Phi\}} \sum_{e=1}^{E} \chi^{(e)} = \sum_{e=1}^{E} \frac{\partial \chi^{(e)}}{\partial \{\Phi\}} = 0, \quad (7)$$

где $\chi^{(e)}$ – вклад от одного элемента в χ ; *E* – общее число элементов.

Минимизация $\,\chi\,$ по $\{arPsi_{}^{}\}\,$ (7) приводит к системе линейных уравнений

Рис. 2. L-координаты для кубичного треугольного элемента

$$\sum_{e=1}^{E} \int_{V^{(e)}} \left[B^{(e)} \right]^{T} \left[D^{(e)} \right] \left[B^{(e)} \right] dV \{ \Phi \} = \sum_{e=1}^{E} \int_{V^{(e)}} \left[N^{(e)} \right]^{T} Q dV , \qquad (8)$$

где $N^{(e)}$ – функция формы, или интерполяционная функция.

В системе линейных уравнений (8) матрица $\begin{bmatrix} B^{(e)} \end{bmatrix}$ выражает связь между вектор-столбцом $\{g^{(e)}\}$ и множеством узловых значений $\{\Phi\}$ следующим образом:

$$\left\{g^{(e)}\right\} = \begin{cases} \frac{\partial \varphi^{(e)}}{\partial x} \\ \frac{\partial \varphi^{(e)}}{\partial y} \end{cases} = \begin{bmatrix} \frac{\partial N_1^{(e)}}{\partial x} & \frac{\partial N_2^{(e)}}{\partial x} & \dots & \frac{\partial N_{10}^{(e)}}{\partial x} \\ \frac{\partial N_1^{(e)}}{\partial y} & \frac{\partial N_2^{(e)}}{\partial y} & \dots & \frac{\partial N_{10}^{(e)}}{\partial y} \end{bmatrix} \begin{cases} \boldsymbol{\Phi}_1 \\ \boldsymbol{\Phi}_2 \end{cases},$$

или

$$\left\{g^{(e)}\right\} = \left[B^{(e)}\right] \left\{\Phi\right\}.$$
(9)

Функции формы $N^{(e)}$ для кубичного треугольного элемента выражаются через L-координаты [2]:

$$N_{1} = \frac{1}{2}L_{1}(3L_{1}-1)(3L_{1}-2); N_{2} = \frac{9}{2}L_{1}L_{2}(3L_{1}-1); N_{3} = \frac{9}{2}L_{1}L_{2}(3L_{2}-1);$$

$$N_{4} = \frac{1}{2}L_{2}(3L_{2}-1)(3L_{2}-2); N_{5} = \frac{9}{2}L_{2}L_{3}(3L_{2}-1); N_{6} = \frac{9}{2}L_{2}L_{3}(3L_{3}-1);$$

$$N_{7} = \frac{1}{2}L_{3}(3L_{3}-1)(3L_{3}-2); N_{8} = \frac{9}{2}L_{1}L_{3}(3L_{3}-1); N_{9} = \frac{9}{2}L_{1}L_{3}(3L_{1}-1);$$

$$N_{10} = 27L_{1}L_{2}L_{3}.$$
(10)

Производные $\partial N_{\beta}/\partial x$ и $\partial N_{\beta}/\partial y$ можно вычислить, воспользовавшись их связью с L-координатами:

$$\begin{cases}
\frac{\partial N_{\beta}}{\partial x} \\
\frac{\partial N_{\beta}}{\partial y}
\end{cases} = \begin{bmatrix} J \end{bmatrix}^{-1} \begin{cases}
\frac{\partial N_{\beta}}{\partial L_{1}} \\
\frac{\partial N_{\beta}}{\partial L_{2}}
\end{cases},$$
(11)

где *[J] –* матрица Якоби.

Она имеет следующий вид:

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial L_1} & \frac{\partial y}{\partial L_1} \\ \frac{\partial x}{\partial L_2} & \frac{\partial y}{\partial L_2} \end{bmatrix}.$$
 (12)

Так как L-координаты не являются независимыми, то при определении производных $\partial N_{\beta}/\partial L_1$ и $\partial N_{\beta}/\partial L_2$ необходимо учитывать координату L_3 :

$$\frac{\partial N_{\beta}}{\partial L_{1}} = \frac{\partial N_{\beta}}{\partial L_{1}} - \frac{\partial N_{\beta}}{\partial L_{3}}, \quad \frac{\partial N_{\beta}}{\partial L_{2}} = \frac{\partial N_{\beta}}{\partial L_{2}} - \frac{\partial N_{\beta}}{\partial L_{3}}.$$
(13)

Координаты любой точки, расположенной внутри треугольного элемента можно выразить через координаты вершин треугольника:

$$x = L_1 \cdot X_1 + L_2 \cdot X_4 + L_3 \cdot X_7;$$

$$y = L_1 \cdot Y_1 + L_2 \cdot Y_4 + L_3 \cdot Y_7,$$
(14)

где Х, У – соответствующие координаты вершин треугольника 1, 4 и 7.

По аналогии с формулами (13) можно определить матрицу Якоби, учитывая выражения (14):

$$\frac{\partial x}{\partial L_1} = \frac{\partial x}{\partial L_1} - \frac{\partial x}{\partial L_3} = X_1 - X_7; \quad \frac{\partial x}{\partial L_2} = \frac{\partial x}{\partial L_2} - \frac{\partial x}{\partial L_3} = X_4 - X_7;$$

$$\frac{\partial y}{\partial L_1} = \frac{\partial y}{\partial L_1} - \frac{\partial y}{\partial L_3} = Y_1 - Y_7; \quad \frac{\partial y}{\partial L_2} = \frac{\partial y}{\partial L_2} - \frac{\partial y}{\partial L_3} = Y_4 - Y_7.$$
(15)

Таким образом, учитывая выражения (13) и (15), по формуле (11) можно найти производные $\partial N_{\beta}/\partial x$ и $\partial N_{\beta}/\partial y$ (табл. 1). В табл.1 приняты следующие обозначения:

$$a = X_1 - X_7, \ b = Y_1 - Y_7, \ c = X_4 - X_7, \ d = Y_4 - Y_7, \ rJ = \frac{1}{a \cdot d - b \cdot c}$$

Таблица 1

	p_{j}
Тип производной	Значение производной в L-координатах
$\partial N_1 / \partial x$	$rJ \cdot \left(d - 9 \cdot d \cdot L_1 + 13.5 \cdot d \cdot L_1^2\right)$
$\partial N_1 / \partial y$	$rJ \cdot \left(-c + 9 \cdot c \cdot L_1 - 13.5 \cdot c \cdot L_1^2\right)$
$\partial N_2 / \partial x$	$rJ \cdot \left(4.5 \cdot b \cdot L_1 - 4.5 \cdot d \cdot L_2 + 27 \cdot d \cdot L_1 \cdot L_2 - 13.5 \cdot b \cdot L_1^2\right)$
$\partial N_2 / \partial y$	$rJ \cdot \left(-4.5 \cdot a \cdot L_1 + 4.5 \cdot c \cdot L_2 - 27 \cdot c \cdot L_1 \cdot L_2 + 13.5 \cdot a \cdot L_1^2\right)$
$\partial N_3 / \partial x$	$rJ \cdot \left(4.5 \cdot b \cdot L_1 - 4.5 \cdot d \cdot L_2 - 27 \cdot b \cdot L_1 \cdot L_2 + 13.5 \cdot d \cdot L_2^2\right)$
$\partial N_3 / \partial y$	$rJ \cdot \left(-4.5 \cdot a \cdot L_1 + 4.5 \cdot c \cdot L_2 + 27 \cdot a \cdot L_1 \cdot L_2 - 13.5 \cdot c \cdot L_2^2\right)$
$\partial N_4 / \partial x$	$rJ \cdot \left[-b + 9 \cdot b \cdot L_2 - 13.5 \cdot b \cdot L_2^2 \right]$
$\partial N_4 / \partial y$	$rJ \cdot \left[a - 9 \cdot a \cdot L_2 + 13.5 \cdot a \cdot L_2^2 \right]$

Производные $\partial N_{eta}/\partial x$ и $\partial N_{eta}/\partial y$

Тип производной	Значение производной в L-координатах
$\partial N_5 / \partial x$	$rJ \cdot \left[4.5 \cdot (d-b) \cdot L_2 + 4.5 \cdot b \cdot L_3 - 27 \cdot b \cdot L_2 \cdot L_3 + 13.5 \cdot (b-d) \cdot L_2^2 \right]$
$\partial N_5 / \partial y$	$rJ \cdot \left[4.5 \cdot (a-c) \cdot L_2 - 4.5 \cdot a \cdot L_3 + 27 \cdot a \cdot L_2 \cdot L_3 + 13.5 \cdot (c-a) \cdot L_2^2 \right]$
$\partial N_6 / \partial x$	$rJ \cdot \left[4.5 \cdot (d-b) \cdot L_2 + 4.5 \cdot b \cdot L_3 + 27 \cdot (b-d) \cdot L_2 \cdot L_3 - 13.5 \cdot b \cdot L_3^2 \right]$
$\partial N_6 / \partial y$	$rJ \cdot \left[4.5 \cdot (a-c) \cdot L_2 - 4.5 \cdot a \cdot L_3 + 27 \cdot (c-a) \cdot L_2 \cdot L_3 + 13.5 \cdot a \cdot L_3^2 \right]$
$\partial N_7 / \partial x$	$rJ \cdot \left[(b-d) + 9 \cdot (d-b) \cdot L_3 + 13.5 \cdot (b-d) \cdot L_3^2 \right]$
$\partial N_7 / \partial y$	$rJ \cdot \left[(c-a) + 9 \cdot (a-c) \cdot L_3 + 13.5 \cdot (c-a) \cdot L_3^2 \right]$
$\partial N_8 / \partial x$	$rJ \cdot \left[4.5 \cdot (d-b) \cdot L_1 - 4.5 \cdot d \cdot L_3 + 27 \cdot (b-d) \cdot L_1 \cdot L_3 + 13.5 \cdot d \cdot L_3^2 \right]$
$\partial N_8 / \partial y$	$rJ \cdot \left[4.5 \cdot (a-c) \cdot L_1 + 4.5 \cdot c \cdot L_3 + 27 \cdot (c-a) \cdot L_1 \cdot L_3 - 13.5 \cdot c \cdot L_3^2 \right]$
$\partial N_9 / \partial x$	$rJ \cdot \left[4.5 \cdot (d-b) \cdot L_1 - 4.5 \cdot d \cdot L_3 + 27 \cdot d \cdot L_1 \cdot L_3 + 13.5 \cdot (b-d) \cdot L_1^2 \right]$
$\partial N_9 / \partial y$	$rJ \cdot \left[4.5 \cdot (a-c) \cdot L_1 + 4.5 \cdot c \cdot L_3 - 27 \cdot c \cdot L_1 \cdot L_3 + 13.5 \cdot (c-a) \cdot L_1^2 \right]$
$\partial N_{10}/\partial x$	$rJ \cdot \left[27 \cdot (b-d) \cdot L_1 \cdot L_2 + 27 \cdot d \cdot L_2 \cdot L_3 - 27 \cdot b \cdot L_1 \cdot L_3\right]$
$\partial N_{10}/\partial y$	$rJ \cdot \left[27 \cdot (c-a) \cdot L_1 \cdot L_2 - 27 \cdot c \cdot L_2 \cdot L_3 + 27 \cdot a \cdot L_1 \cdot L_3\right]$

Продолжение таблицы 1

Систему уравнений (8) можно представить в более компактной форме:

$$\begin{bmatrix} k^{(e)} \end{bmatrix} \cdot \{ \boldsymbol{\Phi} \} = \begin{bmatrix} f^{(e)} \end{bmatrix}, \tag{16}$$

rge $\begin{bmatrix} k^{(e)} \end{bmatrix} = \frac{1}{2} \int_{V^{(e)}} \begin{bmatrix} B^{(e)} \end{bmatrix}^T \begin{bmatrix} D^{(e)} \end{bmatrix} \begin{bmatrix} B^{(e)} \end{bmatrix} dV, \begin{bmatrix} f^{(e)} \end{bmatrix} = \int_{V^{(e)}} \begin{bmatrix} N^{(e)} \end{bmatrix}^T Q dV.$

Элемент матрицы $\begin{bmatrix} k^{(e)} \end{bmatrix}$ вычисляется в соответствующем конечном элементе. Интегрирование выполняется по площади $A^{(e)}$ каждого элемента, так как задача плоская:

$$\begin{bmatrix} k^{(e)} \end{bmatrix} = \frac{1}{2} \int_{A^{(e)}} \begin{bmatrix} B^{(e)} \end{bmatrix}^T \begin{bmatrix} D^{(e)} \end{bmatrix} \begin{bmatrix} B^{(e)} \end{bmatrix} dA .$$
(17)

Аналогично работе [5] для универсального выполнения интегрирования выражения (17) каждый элемент матрицы $\begin{bmatrix} B^{(e)} \end{bmatrix}^T \cdot \begin{bmatrix} D^{(e)} \end{bmatrix} \cdot \begin{bmatrix} B^{(e)} \end{bmatrix}$ записываем в общем виде:

где A0, A1, ..., C1, A2, ..., F2, A3, ..., J3, A4, ..., O4 – коэффициенты в виде чисел, полученные в результате перемножения матриц $\begin{bmatrix} B^{(e)} \end{bmatrix}^T \cdot \begin{bmatrix} D^{(e)} \end{bmatrix} \cdot \begin{bmatrix} B^{(e)} \end{bmatrix}$.

Для интегрирования по площади конечного элемента применяем формулу

$$\int_{A} L_1^a L_2^b L_3^c dA = \frac{a!b!c!}{(a+b+c+2)!} 2A.$$
(19)

Результаты интегрирования выражения (18) с использованием формулы (19) приведены в табл.2. Таблица 2

Результаты интегрировани	ıя $\left[k^{(e)} ight]$
Интеграл	Результат интегрирования
$\frac{1}{2}\int_{A^{(e)}}A0dA^{(e)}$	$A0 \cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} (A1L_1 + B1L_2 + C1L_3) dA^{(e)}$	$\frac{1}{3}(A1+B1+C1)\cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} (A2L_1L_2 + B2L_2L_3 + C2L_1L_3) dA^{(e)}$	$\frac{1}{12} (A2 + B2 + C2) \cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} \left(D2L_1^2 + E2L_2^2 + F2L_3^2 \right) dA^{(e)}$	$\frac{1}{6}(D2+E2+F2)\cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} (B3L_1L_2L_3) dA^{(e)}$	$\frac{1}{60}(B3)\cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} \left(A 3 L_1^2 L_2 + C 3 L_1^2 L_3 + D 3 L_1 L_2^2 \right) dA^{(e)} + C A L_1^{(e)} + C A L_1^{$	$\frac{1}{30}(A3+C3+D3)\cdot A^{(e)} +$
$+\frac{1}{2}\int_{A^{(e)}} \left(E3L_1L_3^2 + F3L_2^2L_3 + G3L_2L_3^2\right) dA^{(e)}$	$+\frac{1}{30}(E3+F3+G3)\cdot A^{(e)}$

	продолжение таолицы z
$\frac{1}{2} \int_{A^{(e)}} \left(H3L_1^3 + I3L_2^3 + J3L_3^3 \right) dA^{(e)}$	$\frac{1}{10}(H3+I3+J3)\cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} \left(A4L_1^2 L_2^2 + B4L_2^2 L_3^2 + C4L_1^2 L_3^2 \right) dA^{(e)}$	$\frac{1}{90} (A4 + B4 + C4) \cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3 + E4L_1L_3^3 + F4L_2L_3^3 \right) dA^{(e)} + \frac{1}{2} \int_{A^{(e)}} \left(D4L_1L_2^3$	$\frac{1}{60}(D4 + E4 + F4) \cdot A^{(e)} +$
$+\frac{1}{2}\int_{A^{(e)}} \left(G4L_1^3L_2 + H4L_1^3L_3 + I4L_2^3L_3\right) dA^{(e)}$	$+\frac{1}{60}(G4+H4+I4)\cdot A^{(e)}$
$\left[\frac{1}{2}\int_{A^{(e)}} \left(J4L_1L_2L_3^2 + K4L_1L_2^2L_3 + L4L_1^2L_2L_3\right) dA^{(e)}\right]$	$\frac{1}{180} (J4 + K4 + L4) \cdot A^{(e)}$
$\frac{1}{2} \int_{A^{(e)}} \left(M 4L_1^4 + N 4L_2^4 + O 4L_3^4 \right) dA^{(e)}$	$\frac{1}{15} (M4 + N4 + O4) \cdot A^{(e)}$

Рассмотрим подробнее вектор-столбец $\left[f^{(e)}\right]$, который входит в систему уравнений (16). Если треугольный элемент принадлежит руслу, то указанный вектор-столбец определяют из выражения

$$\left[f^{(e)}\right] = \int_{V^{(e)}} \left[N^{(e)}\right]^T Q \, dV = \int_{A^{(e)}} \left[N^{(e)}\right]^T Q \, dA.$$

Используя функции формы (10) и интегральную формулу (19), можно получить результаты интегрирования, представленные в табл. 3.

Если треугольный элемент содержит насос, то для этого элемента векторстолбец $\left[f^{(e)}\right]$ можно определить, применяя свойства импульсных функций [1]

$$\left[f^{(e)}\right] = \int_{V^{(e)}} \left[N^{(e)}\right]^T Q \, dV = \int_{A^{(e)}} \left[N^{(e)}\right]^T Q \, dA = P \cdot \left[N^{(e)}\right]^T, \tag{20}$$

где *Р* – мощность насоса.

В формуле (20) функции формы $N^{(e)}$ определяют из равенств (10). Функции формы треугольного элемента зависят от положения насоса внутри этого элемента, которое задается *L*-координатам. *L*-координаты для точечного источника (насоса) определяют через декартовы координаты из системы

$$\begin{cases} x = L_1 \cdot X_1 + L_2 \cdot X_4 + L_3 \cdot X_7 \\ y = L_1 \cdot Y_1 + L_2 \cdot Y_4 + L_3 \cdot Y_7, \\ 1 = L_1 + L_2 + L_3, \end{cases}$$

где *x*, *y* – декартовы координаты точечного источника; *X*,*Y* – соответствующие координаты вершин треугольника 1, 4 и 7 (см. рис. 2). Таблица 3

Результаты интегрирования $\left[f^{(e)} ight]$ для элемента, принадлежащего руслу реки				
Номер узла	Интеграл	Результат		
1,4,7	$\int_{A^{(e)}} \left(\frac{9}{2}L_1^3 - \frac{9}{2}L_1^2 + L_1\right) Q dA, \int_{A^{(e)}} \left(\frac{9}{2}L_2^3 - \frac{9}{2}L_2^2 + L_2\right) Q dA,$ $\int_{A^{(e)}} \left(\frac{9}{2}L_3^3 - \frac{9}{2}L_3^2 + L_3\right) Q dA$	$\frac{1}{30}QA^{(e)}$		
2, 3, 5, 6, 8, 9	$\int_{A^{(e)}} \left(\frac{27}{2} L_1^2 L_2 - \frac{9}{2} L_1 L_2 \right) Q dA, \int_{A^{(e)}} \left(\frac{27}{2} L_1 L_2^2 - \frac{9}{2} L_1 L_2 \right) Q dA,$ $\int_{A^{(e)}} \left(\frac{27}{2} L_2^2 L_3 - \frac{9}{2} L_2 L_3 \right) Q dA, \int_{A^{(e)}} \left(\frac{27}{2} L_2 L_3^2 - \frac{9}{2} L_2 L_3 \right) Q dA,$ $\int_{A^{(e)}} \left(\frac{27}{2} L_3^2 L_1 - \frac{9}{2} L_1 L_3 \right) Q dA, \int_{A^{(e)}} \left(\frac{27}{2} L_3 L_1^2 - \frac{9}{2} L_1 L_3 \right) Q dA,$	$\frac{3}{40}QA^{(e)}$		
10	$\int_{A^{(e)}} 27L_1L_2L_3QdA$	$\frac{9}{20}QA^{(e)}$		

Для однозначного решения системы (16) задают узловые значения Φ для узлов, в которых выполняется граничное условие (3).

Решив систему (16) одним из итерационных методов, можно определить компоненты скорости течения:

$$V_x = -K_{xx} \frac{\partial \varphi}{\partial x}, \ V_y = -K_{yy} \frac{\partial \varphi}{\partial y}.$$

На рис. 3 и 4 показаны результаты расчетов для водоносного слоя.

Рис. 4. Распределение модуля скорости течения

Из результатов видно, что вблизи насосов наблюдается наибольшее изменение значений пьезометрического напора и скорости течения грунтовых вод. Как следствие, неконтролируемая добыча подземных вод может приводить к серьезным нарушениям в подземных водоносных слоях.

Рассмотренная гидравлическая модель позволяет моделировать процессы водного стока с различной степенью детализации и точности. Разработанная на основе описанной модели программа позволяет оценивать экологическую обстановку на реальных водохозяйственных объектах и моделировать мероприятия, компенсирующие нежелательные техногенные воздействия.

Список литературы

- 1. Сегерлинд, Л. Применение метода конечных элементов [Текст] / Л. Сегерлинд М.: Мир, 1979. 392 с.
- 2. Зенкевич, О. Конечные элементы и аппроксимация [Текст] / О. Зенкевич, К. Морган. М.: Мир, 1986. 318 с.
- 3. Стренг, Г. Теория метода конечных элементов [Текст] / Г. Стренг, Дж. Фикс. М.: Мир, 1977. 349 с.
- 4. Крашаница, Ю. А. Автоматизация теоретических и экспериментальных исследований в аэродинамике [Текст]: учеб. пособие / Ю.А. Крашаница, Д.П. Шаройко. Х.: Нац. аэрокосм. ун-т "Харьк. авиац. ин-т.", 2003. 129 с.
- Тюрев, В. В. Решение задач гидромеханики методом конечных элементов [Текст] / В.В. Тюрев, В.А. Тараненко, Ю.С. Мащенко // Открытые информационные и компьютерные интегрированные технологии: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского "ХАИ". – Вып. 63. – Х., 2014. – С. 127 – 133.

Рецензент: к.т.н., проф. Грайворонский В. А., Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков

Поступила в редакция 02.09.2014

Моделювання двовимірної течії ґрунтових вод

Описано модель течії ґрунтових вод для двовимірного випадку. На основі моделі безвихрової течії розглянуто питання моделювання водоносного шару з криволінійними межами і точковими джерелами (насосами). Поставлена задача розв'язана методом скінченних елементів з використанням L-координат для кубічних трикутних елементів.

Ключові слова: течія ґрунтових вод, водоносний шар, кубічний трикутний елемент, безвихрова течія, функції форми, п'єзометричний напір.

Two-dimensional underground waters flow modeling

Described underground waters flow the model for a two-dimensional. Surveyed on the basis a potential flow model questions a water-bearing stratum modeling with curvilinear borders and point sources (pumps). The solution is executed by the finite element method with use L - coordinates for cubic triangular elements.

Keywords: the underground water flow, the water-bearing stratum, cubic triangular elements, the potential flow, the barycentric coordinate system.