УДК 517.958: 539.4: 629.7.02

В. В. Копычко

Деформирование открытой цилиндрической оболочки с неподвижными угловыми точками границы и произвольными перемещениями её сторон

Национальный аэрокосмический университет им. Н. Е. Жуковского «Харьковский авиационный институт», Украина

Поставлена и решена краевая задача для открытой цилиндрической оболочки с прямоугольным планом при полном закреплении угловых точек границы и произвольных перемещениях и углах поворота вдоль её сторон. Решение носит аналитико-численный характер. Исследованы основные свойства полученного решения: устойчивость, сходимость и точность в различных метриках. Показано, что все компоненты напряженно деформированного состояния могут быть получены с любой наперед заданной точностью, т.е. решение является практически точным. Полученные решения имеют непосредственное применение в анализе прочности, устойчивости и колебаний конструкций авиакосмической техники методом сопряжения конструктивных элементов.

Ключевые слова: общая моментная теория оболочек; открытая оболочка, неподвижные угловые точки, произвольные смещения сторон; вспомогательная задача; базовая задача; корректирующая компонента.

1. Постановка и решение задачи

Общий подход к построению решения подобных краевых задач о деформировании произвольной открытой оболочки, на границе которой заданы кинематические воздействия (перемещения и углы поворота), конкретизирован в работе [1]. Этот подход применен к цилиндрической оболочке в работах [2, 3, 4]. Согласно предложенному подходу, решение строится в три этапа. Первый этап реализован в работе [2] – отыскивается специальное частное решение, учитывающее действующую силовую нагрузку путем решения базовой задачи (граница оболочки жестко защемлена). Второй этап – в работе [4] – ищется решение первой вспомогательной задачи, описывающей поведение оболочки при смещении углов и примыкающих сторон. Цель данной работы – решение второй вспомогательной задачи. Здесь, как и в предыдущих работах, основной вопрос – исследование устойчивости, сходимости и точности искомых аналитико-численных решений.

Согласно работе [3] проблема сводится к решению полуоднородной краевой задачи:

$$\vec{Lu}(\alpha,\beta) = 0 \iff \sum_{j=1}^{3} L_{ij}u_j = 0 \ \epsilon \ \Omega,$$

$$\Omega = \left\{ (\alpha,\beta) : -1 < \alpha, \beta < 1 \right\},$$

$$i = 1, 2, 3$$

$$4$$
(1)

при краевых условиях на $\Gamma = \bigcup_{i=1}^{T} \Gamma_i$:

$$w = \varphi_{1}(\beta), \frac{\partial w}{\partial \alpha} = \varphi_{3}(\beta), u = \varphi_{1}^{*}(\beta), v = \varphi_{3}^{*}(\beta); \qquad \alpha = -1;$$

$$w = \varphi_{2}(\beta), \frac{\partial w}{\partial \alpha} = \varphi_{4}(\beta), u = \varphi_{2}^{*}(\beta), v = \varphi_{4}^{*}(\beta); \qquad \alpha = 1;$$

$$w = \psi_{1}(\alpha), \frac{\partial w}{\partial \beta} = \psi_{3}(\alpha), u = \psi_{1}^{*}(\alpha), v = \psi_{3}^{*}(\alpha); \qquad \beta = -1;$$

$$w = \psi_{2}(\alpha), \frac{\partial w}{\partial \beta} = \psi_{4}(\alpha), u = \psi_{2}^{*}(\alpha), v = \psi_{4}^{*}(\alpha); \qquad \beta = 1;$$

$$\vec{u} = \vec{v}_{1}(\alpha), \vec{v} = \vec{v}_{2}(\alpha), v = \psi_{4}^{*}(\alpha); \qquad \beta = 1;$$

$$u = (u_1, u_2, u_3) \equiv (u, v, w),$$

где L – симметричный матричный дифференциальный оператор классической моментной теории оболочек, конкретизированный в работе [3];

φ_k, ψ_k, φ_k, ψ_k – вторая часть краевых функций [3, формула (3)], причем

$$\varphi_k(\pm 1) = \varphi'_k(\pm 1) = \psi_k(\pm 1) = \psi'_k(\pm 1) = \varphi_k^*(\pm 1) = \psi_k^*(\pm 1) = 0, (k = 1, 2, 3, 4).$$
(3)

Относительно правых частей краевых условий (2) следует отметить, что в отличие от работы [4], где решение выражалось через угловые кинематические параметры в явном виде, здесь, к сожалению, не представляется возможным выразить его в таком же явном виде через краевые функции ϕ_k , ψ_k , ϕ_k^* , ψ_k^* . Это было бы возможно, например, если бы была известна точная функция Грина для *базовой* задачи [2], однако она до сих пор не построена. Если заданные краевые функции ϕ_k , ψ_k , ϕ_k^* , ψ_k^* обладают определенными свойствами гладкости, то, независимо от конкретного вида этих функций, их можно единообразно представить в виде рядов по некоторым линейно независимым и полным системам функций на соответствующем участке границы Г_i.

Исходя из данного замечания представим эти функции в таком виде:

$$\varphi_{k}(\beta) = \sum_{n=0}^{\infty} \Phi_{kn} H_{n}(\beta), \psi_{k}(\alpha) = \sum_{m=0}^{\infty} \Psi_{km} H_{m}(\alpha),$$

$$\varphi_{k}^{*}(\beta) = \sum_{n=0}^{\infty} \Phi_{kn}^{*} h_{n}(\beta), \psi_{k}^{*}(\alpha) = \sum_{m=0}^{\infty} \Psi_{km}^{*} h_{m}(\alpha),$$
(4)

где $H_k(z)$, $h_k(z)$ – линейно независимые, полные, ортонормированные на (-1;1) функции, предложенные, изученные и успешно примененные в различных задачах теории пластин в ряде работ С. А. Халилова [5, 6 и др.]. Эти функции являются многочленами, и если функции ϕ_k , ψ_k , ϕ_k^* , ψ_k^* также являются многочленами, чего всегда можно добиться на основании известной аппроксимационной теоремы К. Вейерштрасса о равномерном приближении непрерывной функции многочленами, то ряды (4) превращаются в конечные суммы. Краевые функции ϕ_k , ψ_k , ϕ_k^* , ψ_k^* по своему физическому смыслу непрерывны, а функции ϕ_k и ψ_k еще и непрерывно дифференцируемы.

Отметим, что функции $H_k(z)$, $h_k(z)$ на концах интервала ортогональности удовлетворяют тем же условиям, что и функции ϕ_k , ψ_k , ϕ_k^* , ψ_k^* соответственно.

Для сведения краевой задачи (1) – (2) к базовой искомое решение представим в виде суммы двух компонент:

$$u = u_1 + u_2 = (u_{21}, v_{21}, w_{21}) + (u_{22}, v_{22}, w_{22}).$$
 (5)

Первую компоненту этого представления продолжим в область следующим образом:

$$u_{21} = \sum_{k=1}^{2} \{ \varphi_{k}^{*}(\beta) v_{k}(\alpha) + \psi_{k}^{*}(\alpha) v_{k}(\beta) \}, v_{21} = \sum_{k=1}^{2} \{ \varphi_{k+2}^{*}(\beta) v_{k}(\alpha) + \psi_{k+2}^{*}(\alpha) v_{k}(\beta) \},$$

$$w_{21} = \sum_{k=1}^{4} \{ \varphi_{k}(\beta) f_{k}(\alpha) + \psi_{k}(\alpha) f_{k}(\beta) \},$$
(6)

где v_k , $f_k(z)$ – некоторые многочлены [3, формула (7)]. При этом краевые условия выполнены.

Вторые компоненты будут решением краевой (базовой) задачи:

 $L_{i1}u_{22} + L_{i2}v_{22} + L_{i3}w_{22} = -L_{i1}u_{21} - L_{i2}v_{21} - L_{i3}w_{21} \equiv Q_i(\alpha,\beta) \ (i = 1, 2, 3)$ (7) при однородных краевых условиях, вытекающих из (2). Здесь правые части $Q_i(\alpha,\beta)$, (i=1, 2, 3) в общем случае следует понимать в смысле обобщенных функций.

Решение этой краевой задачи ищем в виде

$$u_{22} = \sum_{m=0}^{M} \sum_{n=0}^{N} U_{mn} h_m(x) h_n(y); \ v_{22} = \sum_{m=0}^{M} \sum_{n=0}^{N} V_{mn} h_m(x) h_n(y);$$

$$w_{22} = \sum_{m=0}^{M} \sum_{n=0}^{N} W_{mn} H_m(x) H_n(y),$$
(8)

где U_{mn}, V_{mn}, W_{mn} – искомые параметры, определяемые путем решения системы линейных алгебраических уравнений(СЛАУ).

В силу многочленного представления как краевых функции (4), так и решения (8) элементы матрицы и вектор правых частей вычисляются точно (все интегралы берутся в замкнутом виде).

2. Анализ решения

Предложенная конструкция решения предполагает постановку и решение шестнадцати независимых краевых задач: на каждой из четырех сторон могут быть заданы функции u, v, w, $\partial w/\partial n$. В случае цилиндрической оболочки достаточно рассмотреть смещения края вдоль образующей и края вдоль направляющей. Ограничимся рассмотрением двух краевых задач: при отсутствии остальных перемещений на криволинейной части границы (x=1) задан прогиб w = H₀(y) и на прямолинейной части (y=1) задан прогиб w = H₀(x) (рис. 1 и 2 соответственно). Параметры рассматриваемой оболочки аналогичны параметрам оболочки, рассмотренной в работе [2].

Рис. 1. Компоненты решения при $w(y)|_{x=1} = H_0(y)$:

а – продолжение граничной функции w в область; б – корректирующее решение w; в – искомое решение w; г – искомое решение u; д – искомое решение v.

Рис. 2. Компоненты решения при w(x)|_{y=1}=H₀(x): а – продолжение граничной функции w в область; б – корректирующее решение w; в – искомое решение w; г – искомое решение u; д – искомое решение v.

Как видно из рис. 1 и 2, корректирующая компонента преобладает по величине и суммарное решение практически совпадает по форме с ней. Кроме того, следует отметить, что v и w соизмеримы и значительно превосходят u.

Об устойчивости процедуры решения СЛАУ и устойчивости самих решений можно судить по скорости установления значений параметров U_{mn} , V_{mn} , W_{mn} в зависимости от верхних пределов в равенствах (8). Представление об этом дают

табл. 1 – 3, где приведены первые пять параметров решения по U, V и W соответственно в зависимости от верхних пределов сумм. Здесь и далее установившиеся значащие цифры выделены жирным шрифтом.

Таблица 1

Стабилизация параметров решения U_{mn}, м

U _{ij}	10	20	30			
W(x=1, y)=H₀(y)						
U ₀₀	- 0,12317 79528603978	-0,1231700677468487	-0,1231700507296973			
U ₀₁	-0,2141051248127875e-1	-0,2138522959439636e-1	-0,2138520698132376e-1			
U ₀₂	-0,5589177847381089e-2	-0,5608985891121882e-2	-0,5608979367856326e-2			
U ₀₃	0,2575044033071886e-2	0,252097122871265e-2	0,2520971071347144e-2			
U ₀₄	0,891055584785886e-3	0,8990013839295631e-3	0,8990027183224146e-3			
W(x, y=1)=H ₀ (x)						
U ₀₀	0,6882920928245995e-1	0,6884310380565731e-1	0,6884310985197831e-1			
U ₀₁	- 0,9 098809439293981e-2	-0,9114874672092448e-2	-0,911487637144289e-2			
U ₀₂	0,13 56865671348918e-1	0,136057615737858e-1	0,1360578242310801e-1			
U ₀₃	-0,1093585877444341e-1	-0,1098795480704491e-1	-0,1098795737253983e-1			
U ₀₄	0,2579056632816048e-2	0,2596377356468823e-2	0,259640132802464e-2			

Таблица 2

Стабилизация параметров решения V_{mn}, м

Vij	10	20	30			
W(x=1, y)=H₀(y)						
V ₀₀	1,615 046067761909	1,615790821862561	1,61579099855198			
V ₀₁	-0,3051577829325887	-0,3036245510618237	-0,3036243739390457			
V ₀₂	-0,2126659326588088	-0,2125539460270805	-0,2125539822672748			
V ₀₃	0,4978291181253277e-1	0,4924406650733378e-1	0,4924403212298719e-			
V ₀₄	0,1980704605345507e-1	0,1986127623623601e-1	0,1986129063959054e-			
W(x, y=1)=H ₀ (x)						
V ₀₀	-1,1097 44312182363	-1,10978509 4130138	-1,10978509873727			
V ₀₁	0,3983438259982718e-2	0,3988540133845208e-2	0,3988581198151999e-			
V ₀₂	0,7859432632209765e-1	0,784953052557486e-1	0,7849529405888785e-			
V ₀₃	0,229226537691795e-1	0,2285363263874904e-1	0,2285367328584864e-			
V ₀₄	0,114 1190619498752	0,1142596192631332	0,1142596153037293			

Таблица 3

Стабилизация параметров решения W_{mn}, м

W _{ij}	10	20	30			
W(x=1, y)=H₀(y)						
W ₀₀	-2,3 09804414471247	-2,310585946925524	-2,310586131215522			
W_{01}	2,25 6903371865974	2,253247456280132	2,253247132944388			
W ₀₂	2,097608160769975	2,099312393923456	2,099312872163261			
W ₀₃	0,2322950443880961	0,2901683451951171	0,2901688818568242			
W ₀₄	-0,09238600668211696	-0,09238978443304428	-0,09238972254437225			
W(x, y=1)=H ₀ (x)						
W ₀₀	-0,6292485130955642	-0,6292502413151555	-0,6292502846258889			
W ₀₁	-1,286392389396218	-1,286235992144798	-1,286235974976026			
W ₀₂	-0,3473283426310885	-0,3470777999479423	-0,3470778753596608			
W ₀₃	-1,0 89303637282336	-1,0900078606377	-1,090007860402041			
W ₀₄	-0,2695198305130216	-0,2691516772999067	-0,2691515646835421			

Кроме процесса установления параметров, наблюдается достаточно быстрое падение модулей их значений. Так, например, отношение W₃₀₃₀/W₀₀ имеет по-

рядок 10⁻⁹, что позволяет утверждать достаточно быструю поточечную (и даже равномерную) сходимость не только самих решений, но и их производных до определенного порядка, через которые выражаются напряжения.

Отсюда следует, что искомые функции (перемещения и напряжения) могут быть определены с любой наперед заданной точностью, т.е. получаемые решения являются практически точными.

За получение необходимой точности отвечают значения верхних пределов М и N в равенствах (8), которые выбираются программным путем.

Здесь, как и в работах [2, 4], наблюдается быстрая сходимость решений как в метрике пространства $L_2(\Omega)$, так и в энергетическом пространстве H_L оператора L. Что же касается сходимости невязки к нулю в системе (7), то она имеет место в любой замкнутой области $\overline{\Omega}'$, целиком содержащейся в области Ω .

Чтобы проследить за устойчивостью, сходимостью и точностью напряжений, обратимся к рис. 3 – 10, на которых показаны графики усилий и моментов по линиям x=0 и y=0 при различных значениях M и N. Рис. 3 – 6 соответствуют заданию перемещения $W(y) = H_0(y)$ на линии x = 1, а рис. 7 – 10 – заданию перемещения $W(x) = H_0(x)$ на линии y = 1.

Рис. 3. T₁(x) и T₁(y) при W(y)|_{x=1} = H₀(y) Рис. 4. T₂(x) и T₂(y) при W(y)|_{x=1} = H₀(y)

Рис. 5. М₁(х) и М₁(у) при W(у)|_{x=1} = H₀(у) Рис. 6. М₂(х) и М₂(у) при W(у)|_{x=1} = H₀(у)

Рис. 7. Т₁(x) и Т₁(y) при W(x)|_{y=1} = H₀(x) Рис. 8. Т₂(x) и Т₂(y) при W(x)|_{y=1} = H₀(x)

Рис. 9. М₁(х) и М₁(у) при W(х)|_{y=1} = H₀(х) Рис. 10. М₂(х) и М₂(у) при W(х)|_{y=1} = H₀(х)

Общим для рис. 3, 4, 7, 8 является то, что мембранные усилия T_1 и T_2 на центральной образующей и центральной направляющей имеют одни и те же порядки, однако характер изменения этих функций вдоль указанных линий совершенно различен: если T_1 на обеих линиях не имеет явно выраженного краевого эффекта, то T_2 на этих же линиях носит характер краевого эффекта. В то же время оба момента M_1 и M_2 носят характер краевого эффекта.

Здесь следует сделать замечание. Наряду с наблюдающимися краевыми эффектами может иметь место кинематический аналог принципа Сен-Венана, которого четко продемонстрировано для пластин наличие в работах С. А. Халилова и др. [7 и др.]. Как известно, в теории оболочек принцип Сен-Венана не имеет абсолютного характера [8], поэтому явно выраженные всплески T₂, M₁ и M₂ на смещенных частях границы могут быть связаны как с краевыми эффектами, так и с кинематическим аналогом принципа Сен-Венана, в то время, как на частях границы, противоположных смещенным, могут наблюдаться только краевые эффекты, хотя и не явно выраженные, что и видно на приведенных рисунках. Этот вопрос по сей день не изучен, поэтому остается открытым.

Что касается вопроса о сходимости и точности, то здесь достаточно отметить, что, начиная с M = N = 18 все графики сливаются, т.е. совпадают с точностью до толщины линии.

И наконец, имеет смысл сопоставить максимальные нормальные и касательные напряжения, вызываемые усилиями и моментами без «привязки» к конкретной точке срединной поверхности оболочки

$$\sigma(T_1) = \frac{7 \cdot 10^8}{0.01} = 7 \cdot 10^{10} \Pi a, \ \sigma(M_1) = \frac{4 \cdot 10^6}{0.01^2} = 4 \cdot 10^{10} \Pi a,$$

$$\sigma(T_2) = \frac{1 \cdot 10^9}{0.01} = 10^{11} \Pi a, \ \sigma(M_2) = \frac{1.5 \cdot 10^6}{0.01^2} = 1.5 \cdot 10^{10} \Pi a.$$

Как видно, моментные напряжения здесь соизмеримы с безмоментными, что свидетельствует о неприменимости приближенных теорий расчета оболочек (безмоментной, полубезмоментной и др.) к расчету открытых оболочек при заданных на границе смещениях.

Заключение

Вывод, которые можно сделать по работе, аналогичны выводам работы [4]. Это означает, что не существует различий при рассмотрении первой и второй вспомогательных задач, так как подход единообразен.

Автор выражает глубокую признательность С. А. Халилову за постановку задачу, постоянные обсуждения и конструктивную и доброжелательную критику.

Список литературы

1. Новые методы исследования линейно и нелинейно деформируемых тел из композиционных материалов. Математические модели, методы их анализа и численная реализация нелинейного деформирования тонкостенных пространственных систем [Текст] : отчет о НИР (заключ.) т. 2 ; рук. С. А. Халилов; исполн. В. Б. Минтюк [и др.]. – Х., 2014. – 160 с. – №ГР 0112U002135. – Инв. № 0215U006163.

2. Основная краевая задача общей классической теории открытой цилиндрической оболочки. Решение базовой задачи [Текст] / С. А. Халилов, В. Б. Минтюк, В.В. Копычко, Д. А. Ткаченко // Авиационно-космическая техника и технология. – 2015. – № 3(120). – С. 24-32.

3. Основная краевая задача общей классической теории открытой цилиндрической оболочки. Конструкция решения [Текст] / В. С. Кривцов, В. Н. Павленко, В. В. Копычко // Авиационно-космическая техника и технология. – 2015. – № 6(123). – С. 16-22.

4. Копычко, В. В. Деформирование открытой цилиндрической оболочки при согласованных обобщенных перемещениях угловых точек границы [Текст] / В. В. Копычко // Открытые информационные и компьютерные интегрированные технологии. – 2015. – Вып. 70. – С. 184–193.

5. Халилов, С. А. Новые системы ортонормированных многочленов, некоторые их свойства и приложения [Текст] / С. А. Халилов // Прочность конструкций летательных аппаратов: темат. сб. науч. тр. Харьк. авиац. ин-та им. Н. Е. Жуковского. – Вып. 5. – Х., 1978. – С. 46 – 56.

6. Халилов, С. А. Вычисление некоторых определенных интегралов, содержащих присоединенные функции Лежандра второго и четвертого порядков [Текст] / С. А. Халилов // Прочность конструкций летательных аппаратов : темат. сб. науч. тр. Харьк. авиац. ин-та им. Н. Е. Жуковского. – Вып. 7. – Х., 1984. – С. 158 – 165.

7. Халилов, С. А. Приближённое аналитическое решение бигармонической проблемы в прямоугольнике при однородных главных краевых условиях на двух противоположных сторонах и произвольных – на двух других [Текст] / С. А. Халилов, В. Б. Минтюк, Д. А. Ткаченко // Авиационно-космическая техника и технология. – 2013. – № 5 (102). – С. 40 – 49.

8. Гольденвейзер, А. Л. Теория тонких упругих оболочек [Текст] / А. Л. Гольденвейзер. – изд. 2-е. – М. : Наука, 1976. – 512 с.

Поступила в редакцию 11.03.2016

Деформування відкритої циліндричної оболонки з нерухомими кутовими точками границі і довільними переміщеннями її сторін

Поставлено і вирішено крайову задачу для відкритої циліндричної оболонки з прямокутним планом при повному закріпленні кутових точок границі та довільних переміщеннях і кутах повороту уздовж її сторін. Рішення має аналітико-числовий характер. Досліджено основні властивості отриманого рішення: стійкість, збіжність і точність у різних метриках. Показано, що всі компоненти НДС можуть бути отримані з будь-якою наперед заданою точністю, тобто рішення є практично точним. Результати даної роботи разом із результатами трьох попередніх робіт автора мають важливе значення при аналізі оболонково-пластинчастих систем, якими є несучі конструкції авіакосмічної техніки.

Ключові слова: загальна моментна теорія оболонок; відкрита оболонка, нерухомі кутові точки, довільні зміщення сторін; допоміжна задача; базова задача; коригувальна компонента.

Deformation of Open Cylindrical Shell with Fixed Border Corner Points and Arbitrary Displacements of its Sides

Given and solved the boundary value problem for an open cylindrical shell with a rectangular plan with the full fixation of the boundary corner points and the arbitrary displacement and rotation angles along its sides. The solution has analytical-numerical character. The basic properties of the solutions: stability, convergence and accuracy were examined in various metrics. It is shown that all the components of the stress strain behavior could be obtained with any prescribed accuracy: i.e. the solution is practically exact. The results of this work, together with the results of the three previous works of the author are important when analyzing the shell-plate systems, which are the supporting structures of aerospace constructions.

Keywords: general moment theory of shells, open shell, fixed angle points, arbitrary displacement of sides; auxiliary task; basic task; correction component.