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The problem of image denoising is considered from the viewpoint of visual quality of filtered 

images. Special experiments with a large number of observers have been carried out to determi-

ne probability that a denoised image is preferable compared to the corresponding original noisy 

one. It has been found that there are many practical cases when observers prefer noisy images. 

This usually happens if an image is highly textural, noise has either quite low or too high inten-

sity, and a used filter performs not efficiently. It has been also shown that modern metrics, even 

those that take into account peculiarities of human vision system, often perform not adequately. 

The cases when it is really worth to carry out image denoising are considered. 
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ОЦІНКА ВІЗУАЛЬНОЇ ЯКОСТІ ЗОБРАЖЕНЬ ПІСЛЯ ФІЛЬТРАЦІЇ 
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Фільтрацію зображень розглянуто як візуальну якість оброблених зображень. Виконано 

експерименти зі залученням великої кількості волонтерів, щоб визначити ймовірність 

того, що оброблене зображення краще за відповідне первинне. Виявлено, що є багато 

ситуацій, коли людина віддає перевагу первинному зображенню, що спотворене шумом. 

Зокрема, якщо зображення дуже текстурне, шум або дуже слабкий, або занадто інтенсив-

ний, а фільтр працює неефективно. Також показано, що сучасні міри, навіть візуальної 

якості, часто працюють неадекватно. Розглянуто випадки застосовності фільтрації.  

Kлючові слова: фільтрація зображень, візуальна якість, експериментальне оцінювання. 

It is known that noise is one of the main factors that degrades quality of images 

acquired by different systems [1, 2]. Because of this image filtering or denoising has 

become a standard operation in the image processing chain. Numerous filters have 

been designed so far (see [2–5] and references therein). Different types of noise have 

been considered [1, 6–8]. Various metrics including visual quality ones [9] have been 

applied to evaluate efficiency of image denoising [10, 11]. 

Meanwhile, efficiency of image filtering has to be evaluated from the viewpoint 

of purposes of image denoising. There are several purposes possible. One purpose 

could be to provide favorable pre-conditions for solving further tasks of image proces-

sing as, e.g., classification [12], segmentation, object detection [1], etc. Another pur-

pose of filtering could be the removal of specific type of noise, i.e. removal of impul-

ses. But the most common purpose of denoising is to improve visual quality of image, 

i.e. to enhance them [3–5, 10, 11]. 

In this sense the situation is such that many researchers (customers or observers) 

are unsatisfied by filtering results. There are quite many cases that observers consider 

visual quality of original images to be better or, at least, not worse than visual quality 

of the corresponding denoised ones although the metrics characterizing quality of 

original and filtered images evidence in favor of quality improvement due to denoising. 

This can be due to different reasons.  

Firstly, a filter used really can be not efficient. In our studies [11, 13], it has been 

found that there are modern filters (including, nonlocal mean filter [14] that often pro-

duce decreasing of visual quality, in particular, for highly textural images). This is not  
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surprising since it has been shown theoretically [2, 15] that there are potential limits of 

filtering efficiency for many practical situations (highly textural images corrupted by 

low and middle intensity noise) for non-local approach to denoising which is the state-

of-the-art nowadays. 

Secondly, alongside with positive effects of noise reduction, a filter can introduce 

artifacts or make annoying effects or produce images of unnatural appearance. In such 

cases a customer can be unsatisfied by filtering results although metrics of image 

quality might not reflect (indicate) the presence of these effects. Meanwhile, their 

presence can influence the opinions of observers who evaluate image quality. 

Thirdly, metrics of image quality can be not adequate. Many researchers state that 

such standard metrics as output mean square error (MSE) or peak signal-to-noise ratio 

(PSNR) are often unable to characterize image visual quality well [9]. But specially 

designed visual quality metrics can be not adequate enough too [16].  

Therefore, the goal of this paper is to analyze visual quality of the denoised 

images for two filters that belong to the most popular families: the standard DCT-based 

filter [17] which represents orthogonal transform based denoising and block-matching 

3-dimensional (BM3D) filter [3] that is one of the best in the family of non-local de-

noisers. We would like to understand the reasons why original images can be preferred 

by the observers who compare them to denoised counterparts.  

Experiments with volunteers. Since humans are customers of original or denoi-

sed images it is worth carrying out experiments with quite many observers to under-

stand when and why a denoised image is preferred. Such experiments have been per-

formed [16]. Sixteen grayscale test images have been used where eight of them can be 

treated as natural scenes and eight others are textural. Four examples for each group are 

shown in Fig. 1 and 2. 

Each observer was shown two images, original (noisy) and filtered ones, at high 

quality monitor in good illumination conditions and with favorable distance from an 

observer to the screen. The task was to choose a preferable image. Additive white 

Gaussian noise has been used as the noise model. Seven values of noise standard de-

viation have been considered, namely, 3, 5, 10, 15, 20, 25, and 30 where all noise-free 

images were represented as 8-bit data arrays.  

 

Fig. 1. Natural scene test images with indices 1, 2, 4, and 8 in the created database.  

 

Fig. 2. Textural test images with indices 10, 12, 14, and 16 in the database. 

Results of comparisons have been collected and averaged for all 145 observers 

that participated in experiments. As a result, probability of voting Pv in favor of de-

noised image has been calculated for each test image, for each value of noise standard 
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deviation and for both filters. Probability tending to unity means that all observers 

prefer a filtered image. Probability of about 0.5 indicates that there is practically no 

difference in visual quality, Probability less than 0.5 evidences that filtering is useless.  

Analysis of the obtained results. Let us show some results obtained for particu-

lar cases. Fig. 3a presents data for the test image # 4 that contains quite large homoge-

neous regions (walls) whilst Fig. 3b shows data for the textural image # 14. Dependen-

ces given in these Figures are typical for natural scene and texture images, respectively. 

The main findings are the following. 

 

Fig. 3. Dependences of probability of voting on noise standard deviation  

for two typical test images ## 4 and 14. 

1) There are two parts of the curves, STD ≤ 10 where probabilities increase and 

reach maxima and STD ≥ 15 where dependences have the tendency to decrease.  

2) This means that the main positive outcome from filtering can be expected if 

input PSNR is about 27 dB; however, even in this case positive effect can be not 

observed or it can be negligible; this happens for textural images.  

3) The difference in visual quality of images processed by DCTF and BM3D filter 

is not considerable for STD ≤ 10 but it becomes larger for larger STD where the use of 

BM3D is preferable;  

4) Probability varies in rather wide limits – from 0.3 to 0.9 in examples presented 

in Fig. 3; meanwhile, in none experiment the probability reaches either unity or zero; 

this means that human’s opinions are quite different even if it seems that a situation can 

be treated in only one way. 

One question that arises: why BM3D produces better visual quality of denoised 

images than DCTF? This happens mainly due to the better preservation of edges and 

fine details that attract human attention during comparisons and sufficiently influence 

the observer’s decision [16]. Meanwhile, it often happens for textures that similar 

patches used in BM3D filter are not found (or, more exactly, the found patches are not 

too similar) and, thus, texture preservation is not perfect. An example is given in Fig. 4 

where it is unclear what among three images (Fig. 4b–d) has the best visual quality (is 

the most similar to the noise free image in Fig. 4a). 

Fig. 5 presents probabilities of voting for denoising for noise STD equal to 15. It 

is seen that this probability of the BM3D filter is always larger than for DCTF, espe-

cially for test images ## 2 and 3 having a lot of edges that are preserved by BM3D 

sufficiently better than by DCTF. Meanwhile, there are such test images (the textural 

images with indices 11–16) for which it is not worth applying filtering (both DCTF or 

BM3D). In general, there are only a few test images for which it is expedient to apply 

DCTF to improve visual quality (images with indices 1–5 and 8).  



ISSN 0474-8662. Information Extraction and Process. 2018. Issue 46 (122) 46 

 

Fig. 4. Fragments of noise-free (a), noisy (b), filtered by DCTF (c),  

and denoised by BM3D (d) images.  

 

Fig. 5. Probabilities of voting for denoising for STD = 15 for two filters.  

Filter performance prediction. Recently, methods to predict some metrics of 

image quality, including visual quality ones [18] have been proposed [19, 20]. In parti-

cular, it has been shown that it is possible to predict improvement of PSNR (IPSNR) 

and improvement of the metric PSNR-HVS-M [18] (denoted as IPHVS, both are ex-

pressed in dB and are calculated as differences of the metric values for output and input 

images). Formally, positive values of IPSNR and IPHVS indicate that positive effect of 

filtering has been reached. But is this really so? And how accurate the prediction is?  
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Fig. 6 shows the real and predicted values of IPHVS for the noise STD = 15 and 

for two considered filters. The prediction method designed in [20] has been used. Pre-

diction is performed using probability 0.5P σ  that absolute values of AC DCT coeffi-

cients determined in 500 randomly placed 8x8 pixel blocks do not exceed 0.5σ. It is 

supposed that noise standard deviation σ is either a priori known or pre-estimated with 

appropriate accuracy [21]. The probability 0.5P σ  is calculated for an image to be 

denoised and applied as input parameter for dependence of output parameter IPHVS on 

0.5P σ  where this dependence has been obtained in advance in off-line mode. Note that 

prediction is very fast since: a) DCT in standard block size is used; b) amount of consi-

dered image blocks is limited; c) approximating dependences are simple and they have 

been obtained in advance.  

It is seen that the real and predicted values corresponding to each other can differ 

by up to 1.5…2 dB. The predicted values for textural images (that have indices 9–16) 

are usually slightly larger than the real ones whilst the predicted values for images with 

large homogeneous regions (test images ## 2, 4, 8) are smaller than real ones.  

 

Fig. 6. Real (a) and predicted (b) values of IPHVS.  

This shows that, on the one hand, further improvement of prediction accuracy is 

desired. But, on the other hand, the problem consists in the other phenomenon. As it 

follows from the joint analysis of data in Fig. 5 and 6, even the predicted values of 

IPHVS of about 1.5 dB do not guarantee (for STD = 15) that visual quality of images 

will improve due to denoising. Only if the predicted IPHVS exceeds 2…2.5 dB, one 

can expect with high probability that it is worth applying denoising. Based on these 

observations as well as on the analysis for other values of noise STD and the results 

obtained for the database TID2013, one can expect that Pv > 0.5 if 

IPHVS > 9.33–0.337PSNRinp. 

To be more “sure” that it is worth using denoising (i.e. to have Pv about 0.6 or 

larger), one has to check the condition that the predicted IPHVS > 10.5–PSNRinp /2 to 

have some reserve for possible inaccuracies of estimated parameters. Recall that 

PSNRinp can be estimated having an estimate of σ as PSNRinp = 10 log10(255
2
/σ2

). Be-

sides, it is not worth applying filtering if PSNRinp > 35 dB, i.e. if noise standard devia-

tion is smaller than 4…5 (see data in Fig. 7). This is because the condition PSNRinp ≈ 

≈ 35 dB approximately corresponds to the limit of noise visibility in noisy images.  

In fact instead of condition PSNRinp > 35 dB it is better to use PHVSinp > 40 dB [22].  

The proposed procedure to undertake decision concerning applying denoising or 

skipping it is quite approximate. As it follows from the analysis of data in Fig. 5 and 6, 



ISSN 0474-8662. Information Extraction and Process. 2018. Issue 46 (122) 48 

it might be so that the same values of IPHVS can correspond to both images for which 

it is worth applying filtering (the test image # 10, BM3D filter) or it is worth to skip 

denoising (the test image # 11). Most probably, the reason for such difference deals 

with different properties of textures. Then this aspect should be studied more in detail. 

 

Fig. 7. Probabilities of voting for denoising for STD = 3 for two filters.  

Besides the predicted parameters IPSNR and IPHVS are integral measures deter-

mined for entire image. It is assumed that the same parameter(s) as, e.g., threshold is 

(are) used for all positions of image blocks. Meanwhile the use of locally adaptive 

settings might improve the filter performance.  

CONCLUSIONS 
It is demonstrated that there are quite many practical situations when it is worth 

applying image denoising while there are also many cases where filtering can be 

skipped without losing image quality but with saving time and resources. Filtering 

efficiency can be predicted in advance for two filters (in fact, prediction can be done 

for many filters that belong to different families [13]). However, prediction of metrics 

considered to be able to characterize image visual quality quite adequate does not 

guarantee that, based on their analysis, it is possible to undertake a decision to filter a 

given image or to skip denoising. 
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