УДК 662.99

Моделирование параметров теплоутилизационной энергетической установки

А. А. Редько¹, А. И. Компан², В. С. Бугай³

¹д.т.н., доцент, Харьковский национальный университет строительства и архитектуры ²аспирант, Харьковский национальный университет строительства и архитектуры ³к.т.н., доцент, Харьковский национальный университет строительства и архитектуры

Приведены результаты математического моделирования процессов преобразования теплоты уходящих газов в электрическую энергию. Получены регрессионные уравнения для расчета удельной электрической мощности от влияющих параметров.

Ключевые слова: теплоутилизационная установка; вычислительный эксперимент; электрическая мощность.

Постановка проблемы. Топливоиспользующие установки промышленности и топливно-энергетического комплекса Украины требуют повышения энергетической эффективности. Наибольшая доля потерь теплоты приходится на потери теплоты с уходящими дымовыми газами. Одним из способов уменьшения потерь теплоты и повышения энергоэффективности топливных агрегатов является использование теплоты уходящих газов в когенерационных установках, производство электрической энергии. Полученная обеспечивающих использоваться собственных электроэнергия может как ДЛЯ нужд теплогенерирующих установок, так и для собственных нужд предприятий, где они установлены.

Использование для утилизации теплоты энергетических установок с низкотемпературным циклом Ренкина позволяет глубоко охладить продукты сгорания, в отдельных случаях, обеспечивая конденсацию водяных паров. В качестве рабочего вещества в цикле Ренкина могут использоваться аммиак, углекислота, углеводороды, другие органические вещества и их смеси.

Одним из важных параметров, определяющих эффективность использования теплоутилизационной энергетической установки, является вырабатываемая электрическая мощность.

В результате проведенного обзора литературных источников [1-3] определен перечень параметров, влияющих на электрическую мощность энергетической установки: давление и температура пара перед турбиной и в конденсаторе, теплофизические свойства рабочего вещества, расход рабочего вещества, значение минимального температурного напора в испарителе и конденсаторе Δt_{min} , температура окружающей среды, внутренний КПД турбины и насоса и др.

Цель исследования – определение влияния физико-химических параметров рабочего вещества на электрическую мощность теплоутилизационной энергетической установки.

Методы исследования. Для проведения исследования использован метод вычислительного эксперимента.

Основные результаты. Анализ многих вариантов расчетов показывает, что сверхкритические циклы энергетических установок по сравнению с докритическими более эффективные (на 15...25 %). Поэтому при проведении вычислительного эксперимента изучались тепловые схемы энергетических установок со сверхкритическими параметрами.

В качестве рабочего вещества в теплоутилизационной установке была принята смесь C_8H_{18} + H_2O . При проведении вычислительного эксперимента принимались следующие диапазоны значений параметров: $\Delta t_{min} = 3...8$ К, $t_{okp.cp.} = +15$ °C, КПД турбины и насоса $\eta_{\rm T} = 0.75...0.8$, $\eta_{\rm H} = 0.75...0.8$.

Вычислительный эксперимент проводили для одноступенчатой И многоступенчатой Для энергетических установок. вычислительного одноступенчатой энергоустановки принимали эксперимента следующие параметры рабочего вещества: давление пара перед турбиной – 4,0 МПа; концентрация водяного пара в смеси C₈H₁₈+H₂O – 25%. При исследовании двухступенчатой энергоустановки принимали следующие параметры рабочего вещества: температура пара перед турбиной первой ступени -300 °C; температура пара перед турбиной второй ступени – 200 °С.

Моделирование параметров одноступенчатой теплоутилизационной энергоустановки.

На рис. 1 изображена схема исследуемой одноступенчатой теплоутилизационной установки.

Рис. 1. Технологическая схема одноступенчатой теплоутилизационной энергетической установки: 1 – турбина; 2 – электрогенератор; 3а, 3б – испаритель, регенеративный теплообменник; 4 – конденсатор; 5 – насос В качестве выходного параметра принято значение удельной электрической мощности N₃, вырабатываемой энергоустановкой:

 $N_{3}=f(P_{T}, X),$

где P_T – давление пара перед турбиной, X – концентрация водяного пара в смеси C_8H_{18} +H₂O.

Для проведения вычислительного эксперимента принят ортогональный план второго порядка, обеспечивающий наивысшую точность вблизи точек центра плана [4].

План эксперимента составлен для окрестности точек внутри указанного предела значений переменных. В табл. 1 приведены координаты центра плана, интервалы варьирования и уровни исследования.

Таблица 1

(1)

Основные характеристики плана вычислительного эксперимента						
Характеристика	Кодовое значение	Давление пара перед	Концентрация			
	фактора турбиной, Рт, МГ		водяного пара в			
			смеси Х,%			
Основной уровень	Xj	4,0	25			
Интервал варьирования	Δx_j	2,0	25			
Верхний уровень	+1	6,0	50			
Нижний уровень	-1	2,0	0			
Звездные точки	+	5,4	44,14			
	-	2,6	15,86			

Число опытов определяется по формуле (при k<5):

 $N = 2^{k} + 2k + n_{0}$,

где k – количество факторов, n₀ – количество нулевых точек.

 $N = 2^2 + 2 \cdot 2 + 2 = 10.$

В табл. 2 приведен план двухфакторного дробного эксперимента для изложенных выше условий.

План двухфакторного дробного эксперимента							
N⁰	Переменные				Выход		
опыта	x_0	<i>x</i> 1	P_T	<i>x</i> ₂	X	Удельная электрическая	
						мощность N _э , кВт/(кг/с)	
1	+	-	2,6	-	15,86	121,80	
2	+	-	2,6	+	44,14	151,96	
3	+	+	5,4	-	15,86	80	
4	+	+	5,4	+	44,14	100,98	
5	+	0	4,10	-	10	136,30	
6	+	0	4,0	+	49,9	148,0	
7	+	-	2,02	0	30	136,0	
8	+	+	5,9	0	30	58,3	
9	+	0	4,0	0	30	144,9	
10	+	0	4,0	0	30	145,2	

План двухфакторного дробного эксперимента

В табл. 3 приведены результаты численных исследований удельной электрической мощности для указанных диапазонов переменных.

Таблица 2

(2)

Матрица полного факторного эксперимента							
X, %	0	20	30	40	50		
Рт, МПа							
2,0	101,5	127,8	136,3	142,9	144,0		
4,0	109,6	139,6	144,9	150,1	151,9		
6,0	48,2	55,1	58,3	67.8	70,2		

грица полного факторного эксперимента

Таблица 3

В каждой серии опытов вычисления проводилось трижды с определением среднего значения функции отклика N₃.

Для определения ошибки воспроизводимости, необходимой для оценки значимости коэффициентов при установлении адекватности математической модели, были выполнены четыре параллельных опыта на нулевых уровнях факторов (строки 9 и 10 табл. 2).

Для данного плана использована модель

$$y = b_0' + b_1 x_1 + b_2 x_2 + b_{11} x_1^2 + b_{22} x_2^2 + b_{12} x_1 x_2.$$
(3)

Для перехода к обычной записи b_0 определено по формуле:

$$b_0 = b_0' - b_{11}\bar{x}_{11}^2 - b_{22}\bar{x}_{22}^2.$$
(4)

Значимость коэффициентов уравнения регрессии проверялась по критерию Стьюдента. Результаты расчета ошибки воспроизводимости и адекватности модели: дисперсия адекватности $S_{aa}^2 = 1,5728 \cdot 10^3$; критерий Фишера F = 3,0; критическое значение критерия Фишера $F_{\kappa p} = 10,25$; критерий Стьюдента $t_i = 0,955$.

В результате получено уравнение регрессии, описывающее функцию отклика – удельную электрическую мощность энергоустановки N₃:

 $N_{\psi} = -35,35 + 89,22 \cdot P_T + 1,94 \cdot X - 12,98 \cdot P_T^2 - 0,014 \cdot X^2 - 0,12 \cdot X \cdot P_T.$ (5)

График зависимости $N_{\scriptscriptstyle 9}$ от влияющих параметров (P $_{\scriptscriptstyle T},$ X) изображен на рис.2.

Рис. 2. График зависимости удельной электрической мощности № от давления пара перед турбиной Рт и концентрации водяного пара в смеси С₈H₁₈+H₂O

Зависимости величины удельной электрической мощности от давления пара перед турбиной и концентрации водяного пара показаны на рис. 3 и 4.

Рис. 3. Графики зависимости удельной электрической мощности N₃ от концентрации водяного пара в смеси C₈H₁₈+H₂O: 1 – P_T=2,0 МПа, 2 – P_T=4,0 МПа, 3 – P_T=6,0 МПа

Рис. 4. Графики зависимости удельной электрической мощности N₃ от давления пара перед турбиной: 1 – X=5 %, 2 – X=20 %, 3 – X=40 %

Моделирование параметров двухступенчатой теплоутилизационной энергоустановки.

Вентиляція, освітлення та теплогазопостачання. Вип. 17, 2014

На рис. 5 изображена схема исследуемой двухступенчатой теплоутилизационной установки.

Рис. 5. Технологическая схема двухступенчатой теплоутилизационной энергетической установки: 1 – турбина первой ступени; 2 – турбина второй ступени; 3 – электрогенератор; 4a, 46 – испаритель, регенеративный теплообменник; 5 – конденсатор; 6 – насос

В качестве выходного параметра, как и для одноступенчатой теплоутилизационной установки, принято значение удельной электрической мощности N₃:

 $N_{\mathfrak{g}}=f(t_1, t_2),$

(6)

где t_1 – температура пара перед турбиной первой ступени, °C; t_2 – температура пара перед турбиной второй ступени, °C.

План вычислительного эксперимента составлен для окрестности точек внутри указанного предела значений переменных. В табл. 4 приведены координаты центра плана, интервалы варьирования и уровни исследования.

Таблица 4

Характеристика	Кодовое значение	Температура пара	Температура пара			
	фактора	перед турбиной	перед турбиной			
		первой ступени t1, °С	второй ступени			
			t2, °C			
Основной уровень	xj ⁰	300	200			
Интервал варьирования	Δx_j	50	50			
Верхний уровень	+1	350	250			
Низкий уровень	-1	250	150			
Звездные точки	+	335,36	235,36			
	-	264,64	164,64			

Основные характеристики плана вычислительного эксперимента

Число опытов для двухфакторного дробного эксперимента N=10. В табл. 5 приведен план двухфакторного эксперимента.

(количество опытов N=10)							
N⁰	Переменные					Выход	
опыта	X 0	<i>x</i> 1	<i>t</i> 1	<i>t</i> ₁ <i>x</i> ₂ <i>t</i> ₂ <i>Y</i>		Удельная электрическая	
						мощность N _э , кВт/(кг/с)	
1	+	-	264,64	-	164,64	112,7	
2	+	-	264,64	+	235,36	119,1	
3	+	+	335,36	-	164,64	82,7	
4	+	+	335,36	+	235,36	93,15	
5	+	0	300	-	149,99	100	
6	+	0	300	+	250,01	115	
7	+	-	249,99	0	200	120	
8	+	+	350	0	200	78,5	
9	+	0	300	0	200	110,8	
10	+	0	300	0	200	112,8	

аол. 5 приведен план двухфакторного эксперимента.

План двухфакторного дробного вычислительного эксперимента

В табл. 6 приведены результаты численных исследований электрической мощности для указанных диапазонов переменных.

• •

Таблица 6

Таблица 5

матрица полного факторного эксперимента							
t2, °C t1, °C	150	172	198	234	250		
350	111	115	120	125,5	117		
300	100	107,9	112,3	116	115		
250	66,8	73,2	78,5	86,2	84,2		

В каждой серии опыты-вычисления проводили трижды и определяли среднее значение функции отклика N₃.

В результате обработки опытных данных получено уравнение регрессии в виде:

$$N_{\rm y} = -627,107 + 3,586t_1 + 1,278t_2 - 0,005t_1^2 - 0,002137t_2^2 + 0,000932t_1t_2.$$
 (7)

Результаты расчета ошибки воспроизводимости и адекватности модели: дисперсия адекватности $S_{ad}^2 = 5,4628 \cdot 10^{-3}$; значение критерия Фишера F = 5,8 при $F_{\kappa p}$ =8,625; значения критерия Стьюдента $t_j = 0,985$.

График зависимости $N_{\scriptscriptstyle 9}$ от влияющих параметров (t_1, t_2) изображен на рис. 6.

Рис. 6. График зависимости удельной электрической мощности N_9 от температуры пара перед турбиной первой ступени t_1 и температуры пара перед турбиной второй ступени t_2

Выводы. Полученные зависимости удельной электрической мощности отражают влияние не только учтенных факторов, но и эффект парных взаимодействий и квадратичных влияний.

Анализ формы поверхности отклика показывает закономерность комплексного влияния принятых факторов на целевую функцию, а полученные регрессионные зависимости могут быть использованы при дальнейшем анализе качественных показателей процесса превращения утилизируемой теплоты в электрическую энергию и теплоту пониженного потенциала.

Показано, что при использовании смеси C₈H₁₈+H₂O в утилизационной энергетической установке при температурах уходящих газов до 350 °C выработка удельной электрической мощности достигает значений 150...154 кВт, что выше, чем в двухступенчатой энергетической установке с органическими веществами – 120...125 кВт, и в турбине с водяным паром – 18 кВт.

Литература

1. Когенерационные технологии в энергетике на основе применения паровых турбин малой мощности / А.Л. Шубенко, В.А. Маляренко, А.В. Сенецкий, Н.Ю. Бабак. – Х.: ИПМАШ НАНУ, 2014. – 320 с.

2. Редько А.О. Термодинамічна ефективність теплоутилізаційних установок з каскадним циклом органічного теплоносія / А.О. Редько, С.В. Павловський // Інтегровані технології та енергозбереження. – Харків: НТУ «ХПІ», 2011. – № 4. – С. 17–22.

3. *Редько А.А.* Выбор рабочего вещества для когенерационного силового контура котельного агрегата / А.А. Редько, С.В. Павловский // Энергетика и электрификация. – 2012. – №2. – С. 24–27.

4. Винарский М.С., Лурье М.В. Планирование эксперимента в технологических исследованиях. – К.: Техника, 1975. – 168 с.

Моделювання параметрів теплоутилізаційної енергетичної установки.

О. О. Редько, А. І. Компан, В.С. Бугай

Наведені результати математичного моделювання процесів перетворення теплоти відхідних газів в електричну енергію. Отримані регресійні рівняння для розрахунку питомої електричної потужності від змінних параметрів.

Ключові слова: теплоутилізаційна установка; обчислювальний експеримент; електрична потужність.

Simulation parameters heat recovery power installation

A. Red'ko, A. Compan, V. Bugaj

The results of mathematical modeling of processes of heat transformation of flue gases into electrical energy are given in the article. The regression equations for the calculation of specific electric power from influencing parameters are obtained.

Key words: heat recovery installation; computational experiment; the electric power.

Надійшла до редакції 12.06.2014 р.