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DETECTING FEATURES ON TRIANGULAR MESHES BY TENSOR VOTING 
 
Abstract	–	In	this	paper,	triangular	meshes	have	been	used	to	represent	objects	 in	computer‐aided	design,	3D	TV	

and	 computer	graphics,	not	 only	due	 to	 their	 simplicity	and	 efficiency,	but	also	 the	 rapid	development	 of	3D	acquisition	
techniques.	Tensor	voting	(TV)	is	a	method	for	inferring	geometric	structures	from	sparse,	irregular	and	possibly	noisy	input.		
To	detect	features	on	triangular	meshes,	a	two	stage	method	is	proposed	in	this	paper.	At	the	first	stage,	the	modified	normal	
tensor	voting	method	is	adopted	to	detect	the	initial	features,	which	include	all	potential	features,	such	as	sharp	and	weak	
features	 and	 possibly	with	 noise.	 At	 the	 second	 stage,	 a	 refinement	 of	 feature	 selection	 is	 conducted	 to	 extract	 the	 real	
features	from	the	initially	detected	features.		
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ОПРЕДЕЛЕНИЕ ПРИЗНАКОВ НА ТРЕУГОЛЬНЫХ СЕТКАХ ТЕНЗОРНЫМ ГОЛОСОВАНИЕМ 

 
Аннотация	 –	 В	 статье	 рассматриваются	 полигональные	 сетки	 	 для	 представления	 объектов	 в	 системах	

автоматизированного	 проектирования,	 3D‐телевидения	 и	 компьютерной	 графики,	 не	 только	 в	 связи	 с	 их	 простотой	 и	
эффективностью,	но	и	быстрым	развитием	методов	3D	об	работки.	Тензор	голосования	(ТВ)	является	методом	для	выделения		
в	 геометрических	 структурах	 разреженностей,	 нерегулярностей	 и,	 возможно,	 шумом	 источника.	 В	 данной	 статье	
предлагается	 метод	 двух	 этапов	 для	 обнаружения	 особенностей	 на	 треугольных	 сетках,	 	 На	 первом	 этапе,	 методом	 ТИ	
обнаруживаются	начальные	признаки,	включающие	в	себя	такие	как	острые	края	и	слабые	особенности	и,	возможно,	шумы.	На	
втором	 этапе,	 происходит	 уточнение	 отобранных	 признаков	 для	 извлечения	 реальных	 возможностей	 обнаружения	
особенностей.	

Ключевые	слова:	Полигональное	моделирование,	3D	TV,	треугольные	сетки,	тензор	голосования.	

 
1. Introduction 

Polygonal meshes [1] are the most popular 3D scene representation in many industries such as architecture 
and entertainment. Due to realism requirements in computer graphics and the development of 3D scanning 
technologies, polygonal meshes representing 3D surfaces contain millions of polygons. On one hand they can 
represent satisfactorily almost any geometric detail of the surface. On the other hand these meshes are complex and 
computationally expensive to be stored, transmitted and rendered. To overcome these limitations, many techniques 
to compress and simplify complex meshes have been developed leading to progressive approaches [2], even for 
time-varying meshes [3]. 

Researchers in [4, 5] present a deformable three-dimensional mesh model which allows the recovery of the 
3D shape and 3D motion. The shape is represented by the triangular mesh, while the movement by vertices 
translations. Deformations occur inter- and intra-frames, with photometric and smoothness constraints. 

As the use of implicit 3D representations gains popularity, the need for modeling software that provides 
implicit model editing capabilities increases. New surface editing approaches are continually being explored and 
much research is being conducted to find ways to interactively modify implicit models. Towards these ends we 
investigated tensor voting as a possible technology that could provide a new and interesting approach for editing 
implicit models. Tensor voting is a method for grouping geometric features [6]. It can be used to generate surfaces 
from a sparse set of possibly noisy and irregular input data, and therefore may provide novel editing capabilities 
within a 3-D modeling context. The goal of our work was to investigate tensor voting as a technique for interactive 
surface modeling. We were interested in determining if TV can be used to model simple objects, edit them 
interactively and control their shape via "input tokens.” To achieve this, we developed a TV modeling system 
(TVMS) based on an already existing TV framework and conducted .experiments to evaluate TV as a 3-D modeling 
tool. Spheres were used to examine the parameters of TVMS. [7] 

 
2 Related works 

Recently, numerous research techniques have been developed for feature detection on triangular meshes. 
According to differential geometry preliminaries, for a smooth oriented surface, feature lines can be defined via 
first- and second-order curvature derivatives, i.e., the extreme of principal curvatures along corresponding principal 
directions. To detect features, a natural idea is following the mathematical definition, such as the method proposed 
by Ohtake et al. (2004). [8] They first identified the feature vertex by testing whether its largest (smallest) curvature 
was locally maximum (minimum) in its corresponding direction. Then, the region growing and skeleton techniques 
were employed to obtain the final feature lines. This method coupled with the similar measure was further used in 
[9] to detect perceptually salient features on 3D meshes. Yoshizawa et al. (2005) [10] extracted the feature lines by 
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estimating the curvature tensor and curvature derivatives via local polynomial fitting. Kim and Kim (2006) [11] 
adopted the moving least-squares approximation method to estimate the local differential information and extracted 
the feature vertices as the zero-crossing of the curvature derivative. In an alternative method, Watanabe and Belyaev 
(2001) [12] extracted features on a polygonal surface by analyzing the focal surface instead of the original mesh. 
They contended that the focal ribs correspond to the lines on the surface where the principal curvatures have 
extremes along their associated principal directions and the points where the principal curvatures are equal. Inspired 
by this observation, Yoshizawa proposed a method for detecting feature lines on meshes. [10] 

Another important category is normal vector based methods. These methods usually identify the features 
by analyzing the dihedral angle of two triangles sharing an edge or the diversity of the normal in a local region 
around the current vertex (di Angelo and di Stefano, 2010).[13] proposed a normal vector voting method for feature 
detection and curvature estimation on noisy meshes. This method is further used in surface segmentation and feature 
detection. The normal tensor voting method can handle sharp features and show robustness to noisy. [8] 

Tensor voting (TV) is a method for inferring geometric structures from sparse, irregular and possibly noisy 
input. It was initially proposed by Guy and Medioni [14] and has been applied to several computer vision 
applications. TV generates a dense output field in a domain by dispersing information associated with sparse input 
tokens. In 3-D this implies that a surface can be generated from a set of input data, giving tensor voting a potential 
application in surface modeling. As higher-order derivatives of the surface are noise sensitive. These unreliable 
differential geometric properties based methods lead to poor results. Another challenge for feature detection is to 
precisely estimate the differential geometric properties in discontinuity regions. For instance, a corner has no 
preferred orientation and the curvature is also meaningless.[15] Therefore, the noise and discontinuities should be 
specially taken care of for piecewise-smooth surfaces in feature detection. [9] 

 
3 Tensor voting 

This section provides an introduction to the Tensor Voting methodology. TV has its background in early 
computer vision problems where the available data often is sparse and noisy, making it difficult to extract relevant 
information and structures. TV identifies local feature descriptions by spreading the information associated with 
shape-related input within a neighborhood while enforcing a smoothness constraint. This process refines the 
information and accentuates local features. By doing so, coherent, locally smooth, geometric features are defined 
and noise is discarded. 

Each data point communicates its information in a neighborhood through a voting process. [9] The more 
information that is received at each data point, the stronger is the likelihood of a geometric feature being present at a 
certain location. This likelihood is expressed through a confidence measure, saliency, which is used in the feature 
extraction process. TV is based on two elements; a data representation, which is obtained by means of tensor 
calculus, and communication of data through linear voting, a process similar to linear convolution. The input 
elements, referred to as input tokens, are encoded into tensor form and communicate their information to their 
neighboring tokens via pre-calculated tensor voting fields. After this initial voting step, each token has its 
confidence and surface orientation encoded into a generic second order symmetric tensor. The tokens vote a second 
time to propagate their information throughout a neighborhood. The result is a dense tensor field which assigns a 
measure of confidence and saliency to each point in the domain. This dense map is decomposed into three dense 
maps, each representing a geometric feature (junctions, curves or surfaces), which are analyzed during feature 
extraction.  The 3-D case, specifically surface voting, is sufficient for our needs and will therefore be the focus of 
this paper. 

Diagonalizing a second order symmetric tensor, which can be represented by a 33  matrix, produces the 
associated characteristic equation. Solving this equation leads to a representation based on the eigenvalues 1; 2; 3 
(in decreasing order) and the associated eigenvectors e1;e2;e3 of the tensor. A second order symmetric tensor may be 
graphically represented as an ellipse in 2-D or an ellipsoid in 3-D. The eigenvalues describe the general size and 
shape of the ellipsoid and the eigenvectors describe its principal directions. Because of the properties of second 
order symmetric tensors, the eigenvalues are real and positive, or zero, and the eigenvectors form an orthonormal 
basis. A tensor can be decomposed into three components.   

The first term corresponds to a 3-D stick tensor, which implies a surface patch with normal e1. The second 
term corresponds to a 3-D plate tensor and implies a curve or surface intersection with tangent e3 that is 
perpendicular to the plane defined by e1 and e2. The last term corresponds to a 3-D ball tensor and implies a 
structure with no orientation preference. [8] 

The voting process is similar to convolution with the difference that convolution produces scalar values and 
tensor voting produces tensors. Voting kernels which encode certain constraints such as smoothness and proximity 
are used. These voting kernels are continuous tensor fields that assign a value to every point within the domain. Any 
voting kernel, regardless of dimension, can be derived from the 2-D stick tensor, which is therefore referred to as the 
fundamental 2-D stick voting field (VF). 

In its most general formulation, it takes as input points belonging to some N-dimensional space and 
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encodes them as N-dimensional tensors. Tensor voting propagates the information of each tensor on its local 
neighborhood by way of tensor voting, ultimately creating a dense tensor field from the originally sparse input. Each 
tensor can be decomposed into features that have some geometric meaning, and each feature has a corresponding 
saliency component. In the 3-dimensional case, a tensor can be decomposed into three geometrically meaningful 
terms, the stick, plate and ball features.  

A token’s stick feature represents the surface normal at it’s location while the plate feature represents a 
curve tangent vector. The saliency of the ball feature represents the degree to which the point appeases to have no 
orientation, describing neither surface nor curve, If the saliency of a token’s stick feature is sufficiently high, the 
point is likely to lie on surface. Surfaces and curves can be extracted from the tensor saliency field using non-
maximal suppression. 
Each point in the range image has color data sampled from a color camera.  

At a higher level of organization, a group of geometric primitives can be processed without any proximity 
assumption (unstructured) or with some smoothness constrains (structured). Examples of representation for a 1D 
manifold is a spline, while for a 2D manifold simple mesh or Non-uniform rational B-spline (NURBS) can be 
used.[16] When it comes to a noisy group of points, tensor voting can be used to interpolate shape on a dense 3D 
grid. The voting results can then be later process to extract 1D and 2D manifolds out of the dense volume. 
In Table 1 you can see characteristics of primitives used for shape approximations. Number in parenthesis of the 
column Nb. Param. corresponds to the minimum number of parameters that can be used to express the same 
primitive. 

 
Table 1  

Characteristics of primitives used for shape approximations 
Primitives Parameters Derivative Manifold Bound Nb Param. 

Point P 0 0 - 3 (3) 
Line l={p,t} 1 1 point 6 (5) 
Plane w={p,n} 1 2 line, curve 6 (5) 
Curve c={p,t.n,k} 2 1 point 10 (7) 
Quadric s={p.n.γ.K} 2 2 line, curve 14 (8) 
 
The shape representation is affected differently by transformation functions. 
In application using point clouds, features arrive already sparse but not uniformly distributed. Nevertheless, 

the fact that sensors can provide a huge number of readings on a short period of time creates a bottleneck in term of 
computation power for the match function. Several techniques are used to reduce the number of features: random 
sampling, uniform grid, grid projection, octree. 

All these techniques reduce the number of features without considering their distinctiveness. It does not 
involve higher-order derivatives. Only the first-order differential geometric property, i.e., normal, is used. For 
piecewise-smooth surfaces, the sharp edge and corner vertices can be easily identified. In light of these advantages, 
the normal tensor voting method is also considered in this paper.  

 
4 Method overview 

Give a triangular mesh  F),E,,(VM    where },...,,{ 21 nvvvV   denotes the set of vertices, E   

denotes the set of edges and },...,,{ 21 fmffF   denotes the set of faces. Each vertex Vvi  is represented 

using Cartesian coordinates, denoted by ),,( iziyixi vvvv  . Let )( if vN  be the face indices of 1-ring neighbors of 

iv .  Method involves four main steps: 

1. Initial feature vertex detection. The initial feature vertices are first extracted and classified into different 
types based on the modified normal tensor voting. 

2. Salient measure computation. For each sharp edged type vertex, a novel salient measure is defined 
according to neighbor supporting. . 

3. Weak feature enhancing. For detecting weak features, a weak feature enhancing technique is 
implemented. 

4. Post-processing. The filtered feature vertices can be connected to generate feature lines. If there are 
tough noisy vertices, which may result in tiny feature lines, an optional pruning operation will be conducted. 

 In the first step, to avoid missing any interesting feature, we generate a large initial feature set. This feature 
set is typically noisy. The second stage includes the remaining three steps, which refine the initial features by 
employing the novelty defined salient measure, weak feature enhancing, and the optional pruning operation. 

To further enhance the robustness of normal tensor voting to detect features on noisy meshes, we propose a 
novel salient measure benefiting from neighbor supporting, which is inspired by the following observation. A crest 
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point has maximum curvature in its corresponding direction and a crest line naturally follows the direction of the 
minimum curvature of its composing crest point. 

That is, the feature vertices lie on the principal curvature line. The vertex lying on a feature line is a feature 
vertex. In fact, if v is a feature vertex, there will be more feature vertices that can be located in the principal 
direction or the opposite principal direction corresponding to its smallest principal curvature. Tracing the located 
feature vertex’s principal direction, we may find more feature vertices lying on a potential feature line. In other 
words, if v is a feature vertex, there will be a certain number of feature vertices along the principal curvature line to 
support. 

The normal voting tensor of a vertex on a triangular mesh can be defined by the unit normal vectors of its 

neighbor triangles. First, the covariance matrix  if
vV  of the triangle if   is written as 
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The normal voting tensor of vertex v is defined by 
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and A(fi) is the area of triangle fi, Amax is the maximum area among Nf (v), cfi is the barycenter of triangle fi, and σ 
is the edge length of a cube that defines the neighboring space of each vertex. [12] 

Because of the properties of second order symmetric tensors, the eigenvalues are real and positive or zero, 
and the eigenvectors form an orthonormal basis. A tensor can be decomposed into three components defined by  

TTT
v eeeeeeT 333222111    (4)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are its eigenvalues and e1, e2, e3 are the corresponding unit eigenvectors. 
To compute the salient measure for each sharp edge type vertex according to Eq. (1), two essential 

ingredients should be determined. One is the initial measure, Ω, and the other is the integral direction, t  
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 In fact, the magnitude of this measure is large for sharp edge and corner type vertices. On the contrary, it is 
small for face type vertices.  In the initial feature detection, λ2 and λ3 play important roles in vertex classification.  

After the Ω’s of all sharp type feature vertices are computed, we normalize them to [0, 1], which allows us 
to set coarse thresholds valid for most models.  

For the integral direction t, ideally, if a point belongs to a curve, the third eigenvector of its tensor must be 
aligned with the tangent to the curve at that point, and λ3 must be zero. Thus, t can be naturally initialized by e3, 
which is called ‘feature direction’ At this point, we have the initial measure Ω and the feature direction t. 

 
Summary 

We study the tensor voting methodology in a modeling context by implementing a simple 3-D modeling 
tool. The user creates a surface from a set of points and normalizes. The user may interact with these tokens in order 
to modify the surface. We describe the results of our investigation. 

Voting and surface extraction is slow for large models and large scales of analysis. The curve and junction 
capabilities of tensor voting should be explored for modeling sharp features and fine details. Each of these 
limitations should be addressed in future versions of a TV-based modeling system. 

The contributions of our work can be summarized as follows:  
1. Based on the idea of neighbor supporting, an anisotropic vertex salient measure is defined, which can 

effectively characterize the geometric features of the surface. 
2. Compared to the methods based on purely differential geometric properties, the newly defined salient 

measure allows the simultaneous detection of both sharp and weak features. 
3. A unified framework for feature detection on triangular meshes is proposed, which is insensitive to noise 

and has a strong ability to discriminate actual features from noise. 
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