Information-measuring and computing systems and in industrial processes

UDC 621

ARTEMII VASILYEVICH KROPACHEV

Bell Integrator USA Automation Solution Department Manager, USA, Colorado
DENIS OLEGOVICH ZUEV

Independent Consultant Lead Arcitect, Network and Cloud USA, Colorado

MAIN ASPECTS OF THE MODERN INFORMATION SYSTEMS HARDWARE RESOURCES
VIRTUALIZATION METHODOLOGY

Main aspects of peculiarities of the modern information systems hardware resources virtualization were analyzed. It
was shown that virtual machines concept provides great opportunity for parallel computing while virtualization technology
enables sharing of hardware resources by multiplexing virtual machines on the same server’s farm. Analysis has demonstrated
that virtualization can be implemented at different operational levels: instruction set architecture level, hardware abstraction
level; operating system level; user level API and application level. Depending on that it could be defined classes of virtual
machine architecture: hypervisor architecture, host-based virtualization, paravirtualization. It was demonstrated that there are
two types of hypervisors: micro-kernel architecture and monolithic hypervisor architecture groups which are proves to be
effective and flexible but requires a lot of resources. Host-based virtualization class advantages were shown as installation
without modifying the host operation system and various host machine configurations which could be adopted. It was noticed
that performance of this architecture is rather low so it usually cannot be adopted. It was also demonstrated that
paravirtualization method implies modifying the guest operation system and development special APIs set so virtualization layer
can be inserted at different positions in server software. It was analyzed development hardware-assisted virtualization
technology and analysis demonstrated virtualization algorithm have to include further virtualization techniques and tools:
virtualization technology for directed input/output, virtualization technology for connectivity, interrupt remapping as software
capability for rerouting signals sent from peripheral devices, memory management unit and translation lookaside buffer.

Keywords: virtualization level, virtual machine architectures, virtual networking, virtual cluster construction, cloud
computing, virtual machine monitor.

APTEMUI BACUJIBEBUY KPOITAYEB
PYKOBOAUTENb AeNapTeMeHTa pelenuii aroMarusanuu Bell Integrator USA, Kosnopano,CLLIA
JEHHUC OJIETOBHY 3YEB

HE3aBUCUMBIIl KOHCYIBTAHT, BeIYIHI apXUTEKTOp ceTeil 1 obmaynsIx BeraucieHnii, Komopamo CILHA

OCHOBHBIE ACIIEKTBI METOJOJIOI'NH BUPTYAJIN3AIIUU AIIITAPATHBIX PECYPCOB
COBPEMEHHBIX THO®OOPMALIMOHHBIX CUCTEM

Ilpoananuzuposanvi ocrHosHble acnekmuvl 0cobenHocmell GUPMYAIU3AYUU annapamHslx pecypcos UHGOPMAYuoHHbIX
cucmenm. Iloxkazarno, umo KoHyenyus 6UpmMyalu3ayuy npeoocmaegisem 6oabuue 803MOACHOCMU Ol NAPANTIENbHbIX 8bIYUCTEHUL,
10360145 COBMECMHO UCNONb306aMb ANNAPAMHbLIE Pecypcbl Nymem MYAbMUnieKCUpoGanus UpmMyanbHulX Mawun Ha 6ase
cepgepnozo napka. Ananus npooemMoOHCMPUposal, Ymo SUPMYanu3ayus Modicem Oblmy peatu3o08ana Ha PaA3HbIX ONEPAYUOHHBIX
VPOBHAX.! YPOBEHb apXumekmypvl HaAOOpA KOMAHO, YPOGeHb AOCMPAKyuu aAnnapamuuix Cpeocms, ypo8eHb ONepayuoHHol
cucmemvl; API yposenv nonvzosamens u ypoeensb npunodicenus. B 3asucumocmu om smozo mocym 6vimsv onpedenenvl K1accol
apxumexmypul GUPMYAIbHOU MAWUHBL APXUMEKMYPA SUNEPEU30pd, SUPMYANU3aAYUs HA OCHOBe XOCMA, NAPAGUDMYATUZAYUSL.
Bvino npodemoncmpuposano, umo cywecmeylom 08a Muna unepeéu3opos, Komopvle OMIAUHAIOMCA Napamempami
apppexmusnocmu, adanmuenocmu u pecypcoemkocmu. Ilpeumywecmsa knacca xocm-supmyanuzayuu Kauaiom 8 ceos
uncmaniayuio 6e3 uzmMeHeHus onepayuoHHol CUCmeMsbl XOCma U a0anmueHOCMb K PA3IuiHbIM KOHPUSYPAYUAM XOCI-NAUUHBL.
Bbvino ommeueno, umo npouseooumenbHocms 2moui apxumexkmypul 00801bHO HU3KAA, NOIMOMY 3A4ACMYIO He PACCMAmMpUearom
npu paspabomke GUPMYanbHOU MawuHsl. bvito maxoce npodemMoHCmMpupo8ano, UmMo Memoo Napasupmyanu3ayuul
noopaszymesgaem MoOUuPUKAyuo 20cmesoll ONepayuUoHHol cucmemsl u cneyuanvhvix API-unmepgeiicoe paspabomxu, nosmomy
YpoGenb eupmyanuzayuy Mmodcem Oblmb 6HEOpeH HA PA3HLIX YPOBHAX — CEPEEPHO20 NPOPAMMHO20 obecneyenus. boino
npoananu3upoOBano pazeumue MexHoN02uu annapamuou GUPMYAIU3Ayuy, aHAlu3 NOKA3AL, YMO Al2OPpUMM GUPMYATU3aAYUU
007dICeH BKIOUAMb OONOTHUMNENbHbIE MEXHONO2UU U CPeOCM8d GUPMYANUZAYUU. MEXHON02US SUPMYATU3AYUU CEA3AHHbIE C
pabomotl npoyeccopa, onepamusHo20 3anoMuHalowe2o ycmpoticmea (Qusuveckue u supmyanshsie aopeca: GVA, GPA, HPA) u
yempoticme 6600a-8b1600a (pynkyuonanvhvle y3nvl konmpoas namamu MMU u onmumuzayuu TLB).

Knioueevie cnosa: yposenv supmyanusayuu, apxXumexmypa GUPMyaibHbIX MAWUH, GUPMYATbHbIE CemuU, GUPMYATbHbLe
Kaacmepul, 0061a4HbIe GbIYUCTCHUSA, MOHUMOP GUPMYATLHOU MAUUHBL.

1. Introduction

Virtual machines (VMs) concept provides a great opportunity for parallel and distributed computing.
Virtualization paradigm technology enables sharing of hardware and software resources by multiplexing VMs on the
same servers farm of hardware hosts. A traditional server farm uses host operating system which should be used in
accordance for its hardware architecture, but after virtualization procedure it is became to run different user
applications managed by their own operating systems (OS) on the same server farm. Most simple model of
virtualization implies additional software implementation which for virtualization layer, known as virtual machine
monitor (VMM) or hypervisor [1, 2]. VM uses virtualized hardware resources (CPU, RAM, cash-memory, data
storage, graphics card and input-output components). Thereby, software layer virtualizes the physical hardware of a
server farm into virtual resources of the VMs which can be implemented at different operational levels [1-4] such as:

instruction set architecture (ISA) level;

e hardware abstraction level;

80 ISSN 2219-9365 Measuring and Computing Devices in Technological Processes Issue 1° 2018 (61)

IndopmaniitHo-BuMipIOBaibHI Ta 00UNCITIOBAJIbHI CUCTEMH 1 KOMIUIEKCH B TEXHOJIOTTYHHX ITpoIiecax

e operating system level;
e user level API (library level);
e application level.

At the instruction set architecture level, virtualization could be performed by emulation of ISA. It brings
possibility to run larger amount of program code for various processors types on limited host hardware resources.
The emulation method has to be based on code interpretation. The algorithm should interpret the source instructions
to get target instructions and for each source instruction it could several target instructions to perform its function.
So the main disadvantage of this operational level is complex algorithm which requires a lot of time. To solve this
problem dynamic binary translation was developed. This algorithm translates basic blocks of dynamic source
instructions to target instructions. According to the method basic blocks can also be extended to group of blocks in
order to increase translation efficiency. It should be mentioned that instruction set emulation requires further
development of binary translation and optimization.

SERVER FARM |
(O 10st 08 | —— B Apptications |
T !

| Hardware resources |

; ‘ Cash ‘ ‘RAM‘ ‘ Data storage ‘

Virtualization operational levels }7

‘ Instruction set architecture level ‘ ‘ Hardware abstraction level ‘

) ‘ Input-output

‘ Operating system level ‘ ‘ Application level | ‘ User level API ‘

' }
4E-{ Virtual machine 1 I 4E-{Virrual machine N}i

@ Guest 08 | ——]| Appications | @ Guest 08 | ——]| Appications |
! T y y

------------- | Virtualized resources } ‘ Virtualized resources }
= i = ;
]]

Fig. 1. Basic algorithm of information system hardware resources virtualization process

Hardware abstraction level virtualization is performed to the hardware resources of server farm. This method
allows to generate a virtual hardware environment for a VM and to manage hardware resource through
virtualization. Up to it the goal is to upgrade the hardware utilization rate by multiple users concurrently. Operating
system level refers to an abstraction layer which lay between traditional OS and user applications. It creates isolated
platform on physical servers that operates like real servers. Operating system level virtualization is often used in
creating virtual hosting environments to divide hardware resources among a big number of users. Library support
(AP]) level was designed in order to use APIs exported libraries rather than using system calls by the OS. Nowadays
most systems provide APIs which are documented good enough so this operational level becomes a popular one.
Library interface virtualization is possible by controlling the communication link between applications and the
system through API hooks. User application level virtualization naturally implies virtualization of application as a
VM. Application usually works as a process so application level virtualization is could be called process level
virtualization. According to this method virtualization layer work with application program and operating system,
thus layer exports an abstraction of a VM that can run programs compiled to a abstract machine definition. Main
benefit of the conception implementation is a simplification of application distribution and removal from user
workstations.

ISSN 2219-9365 Bumipiosansna ma Oéuucniosanvrua Texnixa ¢ Texnonoziunux Ipoyecax — Ne 1° 2018 (61) 81

Information-measuring and computing systems and in industrial processes

2. Virtualization tools and mechanisms

As it was mentioned above there are five levels of virtualization which could be used in development of
classes of VM architecture. It should be noticed that before virtualization OS manages the hardware, while after
virtualization layer should be inserted between the hardware and the OS. Operational layer of virtualization converts
hardware resources into virtual hardware, thereby different user OS can run on the same physical platform,
simultaneously. Depending on the virtualization layer, there are must be defined further classes of VM architectures:

e hypervisor architecture;
e host-based virtualization;
e paravirtualization.

The hypervisor supports hardware-level virtualization and functions directly between the physical hardware
and its OS, providing hypercalls for the guest OS and applications (Fig. 2). Hypervisors are usually to be divided
into micro-kernel architecture and monolithic hypervisor architecture groups, depending on its functionality. A
micro-kernel hypervisor includes basic functions (memory management and processor scheduling) while monolithic
hypervisor architecture type implies also work with changeable components like devices drivers. Therefore, micro-
kernel hypervisor code is smaller but monolithic hypervisor proves to be more effective and flexible.

| HARDWARE RESOURCES |

i|| Cash ‘ .‘RAM| .‘ Data storage ‘ @‘ Graphic card ‘ ‘ Input-output ‘
¢¢¢¢¢¢¢¢¢¢¢¢¢#¢¢#¢¢#¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

| HYPERVISOR |

v ; TIYYY v
4‘ Domain 0 }7 *‘ Guest domain 1 }* *{ Guest domain N }*

| Control ‘ ‘ Input / Output ‘ Igl

Applications Applications Applications

Fig. 2. Hypervisor-type virtual machine architecture

Host-based virtualization implies installation of virtualization layer on top of the host OS which is
responsible for managing the hardware while guest OS should be installed on top of the virtualization layer and user
applications will run on the VMs (Fig. 3). This architecture class has further advantages:

e installation this VM architecture without modifying the host OS, it simplify VM design and its deployment;
e host-based method appeals to various host machine configurations.
But it should be noticed that host-based while architecture has high flexibility, its performance is too low to
be widely used.

‘ Cash ‘ Direct user request
- O
‘ CPU ‘ ‘ Input-output ‘ ‘RAM‘ IE—
AR AR AR 2222222221222121222
| HYPERVISOR |
Hypercalls
‘ Virtualization layer ‘ - '®
Paravirtualized Paravirtualized
Guest OS 1 LI I Guest OS N i —e ‘ Hierarchical protection domain 0 ‘
Applications Applications .
see] 5] oo [7] +— ‘ Hierarchical protection domain 3 ‘—

Fig. 3. Paravirtualized VM architecture, which implies modification of the guest OS

82 ISSN 2219-9365 Measuring and Computing Devices in Technological Processes Issue 1° 2018 (61)

IndopmaniitHo-BuMipIOBaibHI Ta 00UNCITIOBAJIbHI CUCTEMH 1 KOMIUIEKCH B TEXHOJIOTTYHHX ITpoIiecax

Paravirtualization method implies modifying the guest OS while it provides special APIs. Thereby
performance decrease is a main problem of paravirtualization. The virtualization layer can be inserted at different
positions in server software set. Performance could be improved by modifying only the guest OS. Figure 3 shows
paravirtualized VM architecture where the guest OS are paravirtualized. This process must be assisted by compiler
which replaces the OS instructions that cannot be virtualized by hypercalls. It should be noticed that lower the
hierarchical protection domain (protection ring) number has to be associated with higher privilege of instruction to
be executed. The OS manages the hardware and the instructions at domain 0, while user-level applications run at
domain 3. It’s important to mention that virtualized OS cannot on the hardware directly.

3. Hardware support for virtualization paradigm

To implement servers’ hardware virtualization paradigm were developed hardware-assisted virtualization
technology which included special running mode and instructions for x86 class Intel and AMD CPU. Hypervisor
platform and guest OS should use different modes which are switchable on hardware level. This approach allowed
to run multiple processes simultaneously. For system protection from crash all processors uses at least two modes
(user mode and supervisor mode) which has to ensure controlled access of critical hardware. Instructions of
supervisor mode are privileged ones, while other instructions are unprivileged ones [8, 9].

Figure 4 shows scheme of full virtualization techniques. For processor virtualization, there were used VT-x

or VT-i techniques.

VT-x

VT EPT | VI-d [vTe —{E]
| | 1 1

‘ CPU ‘ |DH Memory ‘ ‘ Direct memory access ‘ ‘ Sharable resources }»

| HARDWARE RESOURCES |

+ Virtual machine 1 |>

Applications

*{Virtual machine N %

28| Guest 0s N |

Applications

:j LB cﬂ'
<] (<]

Fig. 4. Model of Intel hardware support for platform virtualization

VT-x adds a privileged mode and special processors’ instructions. It was proposed for memory virtualization
to use extended page tables (EPT), which allows to translate the virtual address to the machine’s physical addresses
for higher performance. For I/O virtualization was implemented virtualization technology for directed input/output
VT-d, virtualization technology for connectivity VT-c and interrupt remapping as software capability for rerouting
signals sent from peripheral devices (Fig. 5).

‘ ‘ VM control structure ‘ —-‘ VT- ‘ ‘VT—X ‘

‘VM cluster configuration‘

| VM root mode ‘

.

!

{Vir‘rual machine 1 }~

a8 usi051]

Applications

EE - B

*{Virtual machine N }~

8] cues 03]

Applications

e ‘ Hierarchical protection domain 0 ‘

Hierarchical protection domain 3 ‘

Fig. 5. Model of Intel hardware-assisted CPU virtualization

ISSN 2219-9365

Bumiprosansna ma Obuucniosanvrua Texnixa ¢ Texnonoziunux Ilpoyecax

Ne 1’2018 (61)

83

Information-measuring and computing systems and in industrial processes

It’s well known that x86 processors are not virtualizable primarily but Intel and AMD took great effort is
taken to virtualize them. VT-x technology demonstrates hardware assisted virtualization class. Start and stop of a
VM lifecycle and allocation of memory page is maintained by implementation of additional set. Hardware assisted
virtualization model shows high efficiency but main problem to solve is still problem of binary translation
performing. Paravirtualization systems often use a hybrid approach, so some tasks are loaded to the hardware, while
other ones should be done in software environment.

Memory virtualization algorithm also includes special virtualization technique and to observe it we should
define further terms:

e guest virtual addresses (GVA) as a virtual memory address of a process in guest OS;

e guest physical addresses (GPA) as a physical memory address in guest OS;

e host physical address (HPA) as a physical memory address of the host machine;

e memory management unit (MMU);

e translation lookaside buffer (TLB) as a tool used to optimize virtual memory performance.

Traditionally OS maintains mappings of virtual memory to machine memory by page tables (so called one-
stage mapping). Modern x86 CPUs operates with MMU and TLB to optimize virtual memory performance. But
virtual memory virtualization also involves sharing the physical system memory to allocate it to the physical
memory of the VM components. In this case two-stage mapping process is to be used:

1. virtual memory to physical memory sharing;

2. physical memory to machine memory sharing.

MMU virtualization must be also supported as transparent to the guest OS process. The guest OS has to
control the mapping of virtual addresses to the physical memory of VM but has no access the actual machine
memory.

Level 4

GPA

Guest OS kernel
CR3
)

EPT | TLB EPT |MMU |= T
|| HPA
EPT pointer
Y

Fig. 6. Model of memory virtualization scheme using EPT

Hardware virtualization based EPT technique is shown at Figure 6. Up to the scheme page tables of the guest
OS and EPT should has four-levels. When a virtual address has to be translated, the CPU will start from level 4 page
table pointed to by Guest CR3 register and converts the Guest CR3 GPA to the HPA. CPU checks the EPT TLB to
find translation and if there is no translation CPU will look for it in the EPT. If the there are no translation in the
EPT, an EPT violation exception will run. At the next stage CPU should calculate the GPA of the level 3 page table
by using the GVA and the content of the level 4 page table. If it will find a page fault, the CPU should generate a
84 ISSN 2219-9365 Measuring and Computing Devices in Technological Processes Issue 1° 2018 (61)

IndopmaniitHo-BuMipIOBaibHI Ta 00UNCITIOBAJIbHI CUCTEMH 1 KOMIUIEKCH B TEXHOJIOTTYHHX ITpoIiecax

page fault interrupt and then guest OS kernel will handle the interrupt. When the PGA of the level 3 page table is
obtained, the CPU should look for the EPT to find the HPA of the level 3 page table and continue the procedure in
same way.

Conclusions

Peculiarities of the modern information systems hardware resources virtualization were analyzed. It was
shown that virtual machines concept provides opportunity for parallel computing, virtualization technology enables
sharing of hardware resources by multiplexing virtual machines on the same server’s farm. Software layer
virtualizes the information system hardware into virtual resources which can be implemented at different operational
levels: instruction set architecture level, hardware abstraction level; operating system level; user level API and
application level. Depending on the virtualization layer, there are could be defined classes of virtual machine
architecture: hypervisor architecture, host-based virtualization, paravirtualization. It was demonstrated that
hypervisors should be divided into micro-kernel architecture and monolithic hypervisor architecture groups which
are proves to be effective and flexible but requires a lot of resources. Host-based virtualization class advantages
were shown, there are: installation without modifying the host operation system and various host machine
configurations which could be adopted. But it was noticed that performance of this architecture is rather low. It was
also demonstrated that paravirtualization method implies modifying the guest operation system and development
special APIs set so virtualization layer can be inserted at different positions in server software. It was analyzed
development hardware-assisted virtualization technology in order to implement servers’ hardware virtualization
paradigm. Analysis demonstrated virtualization algorithm includes special virtualization techniques and tools such
as virtualization technology for directed input/output, virtualization technology for connectivity, interrupt remapping
as software capability for rerouting signals sent from peripheral devices, memory management unit and translation
lookaside buffer.

References
1. Meyer, S., Martini, N., & Witt, N. (2014) Virtualization: Analysis of different virtual machine solutions
128 p.
2. Kusnetzky, D. (2011). Virtualization: A managers guide. Sebastopol, CA: OReilly.
3. Papazoglou, M. (2012). Web services & SOA: Principles and technology. Essex, England: Pearson
Education.
4. Cherkaoui, O., & Menon, R. (2014). Virtualization, Cloud, SDN, and SDDC in Data Centers. Data Center
Handbook, 389-400. doi:10.1002/9781118937563.ch20
5. Nikolskiy, A. V., & Vasil’Ev, Y. S. (2015). Formal model of cyber attacks on virtualization tools and a

measure of hypervisor vulnerability. Automatic Control and Computer Sciences, 49(8), 751-757.
doi:10.3103/s014641161508012x

6. Elaffendi, M. A., & Alamudy, A. L. (2017). Could Virtualization be the Ultimate Solution for IoT
Resource Constrained Devices Problem? A Multilevel Security Framework Based on Device Virtualization. 2017
International Conference on Computer and Applications (ICCA). doi:10.1109/comapp.2017.8079750

7. Wang, X., Sun, Y., Luo, Y., Wang, Z., Li, Y., Zhang, B., . . . Li, X. (2010). Dynamic memory
paravirtualization transparent to guest OS. Science China Information Sciences, 53(1), 77-88. do0i:10.1007/s11432-
010-0008-x

8. Index. (2016). Intel Xeon Phi Processor High Performance Programming, 623-632. doi:10.1016/6978-0-
12-809194-4.09985-3
9. Hamburger, V. (2016). Building VMware Software-Defined Data Centers. Birmingham: Packt Publishing.
Penensis/Peer review : 11.1.2018 p. Hanpykosana/Printed :9.4.2018 p.
Penensenr :

ISSN 2219-9365 Bumipiosansna ma Oéuucniosanvrua Texnixa ¢ Texnonoziunux Ipoyecax — Ne 1° 2018 (61) 85

