УДК 548.736.4

А.О. Стецьків

Кристалічна та електронна структура сполуки Yb₅Na₄Ge₄

Івано-Франківський національний медичний університет, вул. Галицька, 2, м. Івано-Франківськ, 76018, Україна

Методом монокристалу досліджено кристалічну структуру тернарної сполуки Yb₅Na₄Ge₄ (структурний тип Nb₅Cu₄Si₄, просторова група *I4/m*, символ Пірсона *tl26*) за допомогою дифрактометру XCALIBUR (Мо K_a -випромінювання). Структуру визначено прямими методами з використанням комплексу програм SHELX–97. Уточнення кристалічної структури досліджуваної сполуки показало, що вона належить до структурного типу Nb₅Cu₄Si₄, де атоми Yb1, Yb2, Ge займають положення 8 (h), а атоми Na – 2(a). Найбільші за розмірами атоми Yb укладені у 17- та 14-вершинники. Для атомів Ge координаційним полігранником є тригональна призма з трьома додатковими атомами, а для Na – координаційні полігранники з координаційним числом 12, які можна розглядати як деформовані кубооктаедри. Міжатомні відстані приймають допустимі для інтерметалічних сполук значення. Густина станів у ділянці рівня Фермі свідчить про металічний зв'язок у знайденій тернарній фазі.

Ключові слова: рідкісноземельні метали, натрій, інтерметалічні сполуки, синтез, Х-проміневий аналіз, кристалічна структура, полігранник, електронна структура.

A.O. Stetskiv

Crystal and Electronic Structure of the Compound Yb₅Na₄Ge₄

Ivano-Frankivsk National Medical University, 2, Galytska Str., Ivano-Frankivsk, 76018, Ukraine

The crystal structure of the ternary phase $Yb_5Na_4Ge_4$ (a=1,1607(1)nm, c=0,45298(2)nm), which belongs to the Nb₅Cu₄Si₄ structure type (space group *I4/m*, Pearson symbol *tI26*), was investigated by single crystal method using single crystal diffractometer XCALIBUR (MoK_a-radiation). This structure was resolved by means direct method. Atomic and thermal displacement parameters are refined by SHELX-97. The results of calculation and refinement of the crystal structure of compound Yb₅Na₄Ge₄ shown, that it is isostructural to the structural type Nb₅Cu₄Si₄, where Ge, Yb1 and Yb2 atoms occupying position 8 (h), and the atoms Na – 2 (a). The coordination polyhedra ytterbium atoms in this structure – 14- and 17-polyhedron. Ge atoms are invested in trigonal prism with three additional atoms, Na atoms are surrounded by 12 neighbor atoms in a distorted cuboctahedron form. An interatomic distance are taking permissible importance for intermetallic compounds. The density of states in the Fermi level indicates a metallic connection type found in the ternary phase.

Key words: rare-earth metals, intermetallic compounds, synthesis, X-ray analysis, the crystal structure, polyhedra, electronic structure.

Стаття поступила до редакції 24.04.2015; прийнята до друку 15.09.2015.

Вступ

Потрійні системи складу R-Li-X (де R – рідкісноземельний метал, X – силіцій, германій, станум) інтенсивно досліджуються останніми роками. Для деяких з них побудовано ізотермічні перерізи діаграм стану, у багатьох виявлено існування інтерметалічних сполук різноманітної стехіометрії та кристалохімічної будови [1-3], які характеризуються цілим комплексом фізико-хімічних властивостей.

У той же час системи R-Na-X практично не вивчались через високу хімічну активність досліджуваних зразків. Перші дослідження взаємодії компонентів у них відбулись нещодавно і описані авторами [4, 5]. У цих роботах повідомили про існування сполук складу EuNa₈Sn₆, EuNa₁₀Sn₁₂ та YbNa₁₀Sn₁₂. Для першої фази встановлено, що вона характеризується моноклінною симетрією та належить до структурного вигляду BaNa₈Pb₆. Сполуки EuNa₁₀Sn₁₂ і YbNa₁₀Sn₁₂ є ізоструктурними та їх структура є близькоспорідненою до Zn₄B₆O₁₃ [6].

У роботі [7] методом монокристалу досліджено кристалічну структуру тернарної сполуки Nd₄NaSn₄, яка кристалізується у структурному вигляді Tm₄LiGe₄.

У ході систематичного дослідження фазових рівноваг у системі Yb-Na-Ge було виявлено існування сполуки із структурою вигляду Nb₅Cu₄Si₄ [8]. Дана структура (просторова група I4/m, символ Пірсона tI26) є досить поширеним серед структур тернарних силіцидів, германідів, станідів рідкісноземельних металів і літію, а також інших первнів [9-11].

Метою даної роботи було дослідження взаємодії компонентів у системі Yb-Na-Ge, встановлення кристалографічних параметрів та розрахунок електронної структури отриманої тернарної сполуки Yb₅Na₄Ge₄.

I. Експериментальна частина

Стопи виготовляли у два етапи, використовуючи для синтезу метали наступної чистоти: натрій – 0,9997, ітербій > 0,999, германій – 0,9999 масових часток основного компоненту. Під час першого етапу шихту із наважок чистих компонентів нагрівали в індукційній печі у танталовому тиглі до температури 673 К та витримували протягом 4 год.

Під час другого етапу нагрівали стопи до температури 1073 К та витримували протягом 1 год. Контроль маси стопів шляхом порівняння маси шихти з масою стопу не проводили, оскільки тигель був герметично запаяний, що унеможливлювало будь-які втрати.

Гомогенізуючий відпал проводили за температури 473 К протягом трьох тижнів. Стопи поміщали в танталові контейнери і запаювали у кварцові ампули з попередньою евакуацією повітря. Відпал проводили у муфельній печі МП-60 з автоматичним регулюванням температури з точністю ±5 К. Відпалені стопи загартовували у вазеліновій оливі кімнатної температури, не розбиваючи ампул.

Контроль гомогенності і рівноваговості зразків здійснювали за Х-проміневим аналізом. Стопи зберігали під шаром індиферентної оливи, попередньо очищеної та зневодненої. Фазовий аналіз проводили, використовуючи дифрактограми зразків, що отримані на порошкових дифрактометрах URD-6 (СиК_α-випромінювання).

Монокристал сірого кольору у вигляді платівки відібрали зі зразку складу $Yb_{40}Na_{30}Ge_{30}$. Дослідження методами Лауе та Вейссенберга підтвердили належність їх структур до тетрагональної сингонії. Масив Х-проміневих дифракційних даних отримали за кімнатної температури на автоматичному монокристальному дифрактометрі XCALIBUR (МоК_{α}-випромінювання, графітовий монохроматор, ω -метод сканування). Структуру визначили прямими методами у просторовій групі *I*4/*m*, з використанням комплексу програм SHELX-97 [12]. Розрахунок електронної структури виконано за допомогою програмного пакету TB-LMTO-ASA [13].

II. Результати та обговорення

Результати обчислення та уточнення кристалічної структури сполуки Yb₅Na₄Ge₄ засвідчили, що вона є ізоструктурною і відноситься до структурного вигляду Nb₅Cu₄Si₄, який є надструктурою до Sm₉Ga₄ [2], де атоми Ge, Yb1 та Yb2 займають положення 8 (h), а атоми Na – 2(a). Умови експерименту та результати уточнення структури сполуки приведено у табл. 1.

Таблиця 1

Елементи експерименту і результати уточнення методом монокристалу

Емпірична формула	Yb ₅ Na ₄ Ge ₄		
Структурний тип	Nb ₅ Cu ₄ Si ₄		
Молярна маса (г/моль)	1247,60		
Симетрія	Тетрагональна		
Просторова група	I4/m		
Символ Пірсона	t126		
Розміри кристалу (мм ³)	0,06×0,04×0,01		
Температура, К	293(2)		
Параметри чарунки:			
а, нм	1,1607 (1)		
<i>b</i> , нм	1,1607 (1)		
С, НМ	0,45298 (2)		
<i>V</i> , нм ³	0,6103 (1)		
Ζ	2		
Тип сканування	ω		
Випромінювання (довжина хвилі, нм)	МоК _α (λ=0,071073нм)		
Межі в під час зйомки кристалу (°)	2,50 - 25,0		
Межі <i>h k l</i>	$-9 \le h \le 9, -13 \le k \le 13, -5 \le l \le 5$		
Загальна кількість рефлексів	1224		
Незалежні рефлекси	$306 (R_{int} = 0, 129)$		
Рефлекси з I > 2σ(I)	285 ($R_{sigma} = 0,031$)		
Чинник добротності, S	1,53		
R (F) [F ² > 2 σ (F ²)]	0,055		
$wR(F^2)$	0,110		
Найбільша та найменша залишкова електронна густина (е/нм ³)	2230 та -1730		

Таблиця 2

Атомні координати та параметри теплового коливання атомів (нм²)

Атоми	ПСТ	x	у	Z	$U_{ m iso}$
Yb1	8h	0,003801 (1)	0,003051 (1)	0,000000	0,000098 (1)*
Yb2	8h	0,000000	0,000000	0,000000	0,000101 (1)*
Ge	8h	0,002424 (1)	0,000830 (1)	0,000000	0,000123 (2)*
Na	2a	0,000992 (2)	0,004117 (2)	0,000000	0,000108 (2)*

Таблиця 3

Міжатомні віддалі у структурі Yb₅Na₄Ge₄

Атоми	δ (нм)	Атоми	δ (нм)
Na–Ge ⁱ	0,29178 (16)	Yb1–Yb2 ⁱⁱⁱ	0,34906 (9)
Na–Na ⁱⁱ	0,3144 (2)	Yb1-Yb2 ⁱ	0,34906 (9)
Na–Ge ⁱⁱⁱ	0,29178 (16)	Yb1–Yb2 ⁱⁱ	0,34906 (9)
Ge-Yb1 ⁱ	0,29729 (11)	Ge-Yb1 ⁱⁱⁱ	0,29729 (11)
Ge-Yb2 ^{iv}	0,29739 (12)	Na–Yb1 ⁱⁱⁱ	0,33941 (19)
Ge–Yb2 ^v	0,29739 (12)	Na–Na ^{vi}	0,3144 (2)
Yb1–Yb1 ⁱⁱⁱ	0,39859 (14)	Na–Na ^{vii}	0,9700 (3)
Na-Yb1 ⁱ	0,33941 (19)	Na–Ge ^{viii}	0,4019 (3)

Рис. 1. Елементарна чарунка структури та координаційні полігранники атомів.

Координати та параметри теплового коливання атомів у структурі досліджуваної сполуки представлені в табл. 2.

Елементарна чарунка структури та координаційні поліґранники атомів приведені на рис. 1. Кількість сусідніх атомів добре корелюється з розмірами центральних атомів. Найбільші за розмірами атоми Yb укладені у 17- та 14-вершинники. Для атомів Ge у цій структурі характерним координаційним полігранником є тригональна призма з трьома додатковими атомами. Для атомів Na у цій структурі характерними координаційними полігранниками є полігранники з координаційним числом 12, які можна розглядати як деформовані кубооктаедри.

Міжатомні віддалі приймають допустимі для інтерметалідів значення (табл. 3).

Рис. 2. Укладка тетраедрів [Na₄] та октаедрів [Yb₆] у структурі сполуки Yb₅Na₄Ge₄.

Рис. 3. Функція локалізації електронної густини (ELF) у моделі тернарної фази Yb₅Na₄Ge₄.

У структурі сполуки Yb₅Na₄Ge₄ атоми натрію утворюють порожні тетраедри [Na₄], а атоми ітербію утворюють порожні октаедри [Yb₆], які ізольовані атомами ґерманію у площині *xy* (рис. 2).

Розрахунок електронної структури виконано за допомогою програмного пакету ТВ-LMTO-ASA [13] для з'ясування причин утворення хімічного зв'язку. Упорядкована модель потрійної фази Yb₅Na₄Ge₄ (рис. 3) зі структурою вигляду Nb₅Cu₄Si₄ була проаналізована. За результатами розрахунків встановлено, що атоми ітербію та натрію віддають свої електрони атомам германію, навколо яких функція електронної локалізації є більшою за 0,83. Натомість, біля атомів Yb та Na ця функція наближається до 0. Ізоповерхня електронної густини дослідженої сполуки представлена на рис. 4.

Густина станів у ділянці рівня Фермі свідчить про металічний зв'язок у дослідженій тернарній фазі, хоча не виключається слабка ковалентна взаємодія між атомами германію (рис. 5).

Рис. 4. Ізоповерхня електронної густини у моделі тернарної фази Yb₅Na₄Ge₄.

Висновки

1. Методом монокристалу визначено кристалічну структуру тернарної сполуки $Yb_5Na_4Ge_4$, яка належить до структурного типу $Nb_5Cu_4Si_4$ (параметри чарунки а= 1,1607 (1) нм, с= 0,45298 (2) нм).

2. Виявлено, що атоми натрію утворюють порожні тетраедри [Na₄], а атоми ітербію утворюють порожні октаедри [Yb₆], які ізольовані атомами германію в площині *ху*.

3. Виявлено, що атоми Уb укладені в 17- та 14-вершинники; для атомів Ge у цій структурі характерним координаційним полігранником є тригональна призма з трьома додатковими атомами, а для Na – деформований кубооктаедр.

4. Встановлено, що для таких сполук характерним є металічний зв'язок, про що свідчать значення функції електронної локалізації та густина станів у ділянці рівня Фермі.

Література

- 1. В.В. Павлюк, О.И. Бодак, В.К. Печарский, Изв. АН СССР. Неорганические материалы, 25 (7), 1145 (1989).
- 2. V. Pavlyuk, A. Stetskiv, B. Rożdżyńska-Kiełbik, Intermetallics, 43, 29 (2013).
- 3. J.P.A. Makongo, Nian-Tzu Suen, Shengping Guo, Journal of Solid State Chemistry, 211, 95 (2014).
- 4. I. Todorov, S.C. Sevov, Inorganic Chemistry, 43 (20), 6490 (2004).
- 5. I. Todorov, S.C. Sevov, Inorganic Chemistry, 45 (11), 4478 (2006).
- 6. P. Smith, Garcia Blanco S., L. Rivoir, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 119 (375 (1964).
- 7. А.О. Стецьків, В.В. Павлюк, Наук. вісник Ужгород. ун-ту (Сер. Хімія), 32 (2), 23 (2014).
- 8. E. Ganglberger, Monatshefte für Chemie, 99 (2), 549 (1968).
- 9. S.P. Yatsenko, Yu.N. Hryn', O.M. Sitschevitsch, K.A. Tschuntonow, J. Less Common Metals35 (1985).
- 10. В.В. Павлюк, В.К. Печарский, О.И. Бодак, А.Н. Соболев, Металлы, (5), 221 (1989).
- 11. M. Wang, McDonald R., A. Mar, Inorganic Chemistry, 39 (21), 4936 (2000).
- 12. G.M. Sheldrick, SHELXL-97 (University of Göttingen. Germany, 1997).
- 13. G. Krier, O. Jepsen, A. Burkhardt, O.K. Andersen, The TBLMTO-ASA program, version 4.7 (Max-Planck-Institut für Festkörperforschung: Stuttgart, Germany, 2000).

Стецьків Андрій Остапович – кандидат хімічних наук, доцент, завідувач кафедри хімії фармацевтичного факультету.