УДК 621.313; 621.314

А. М. ГАЛИНОВСКИЙ, Е. А. ЛЕНСКАЯ

ХАРАКТЕРИСТИКИ НЕРЕВЕРСИВНЫХ ТИРИСТОРНЫХ ВЫПРЯМИТЕЛЕЙ БЕСКОНТАКТНЫХ СИНХРОННЫХ МАШИН В ЗАВИСИМОСТИ ОТ УГЛА УПРАВЛЕНИЯ

Приведены методики расчета характеристик нереверсивных тиристорных выпрямителей бесконтактных синхронных машин в зависимости от угла управления тиристорами. Расчет моделей тиристорных выпрямителей проводится в системе схемотехнического моделирования в квазиустановившихся или переходных режимах работы. При расчете моделей выпрямителей в переходных режимах работы ограничивается число величин, текущие числовые значения которых записываются в оперативную память программы. Расчет проводится при частоте управления тиристорами меньшей частоты источника питания выпрямителя.

Ключевые слова: бесконтактная, синхронная, машина, выпрямитель, тиристор, угол, управление.

Введение. В бесконтактных синхронных машинах (БСМ) применяются диодные или тиристорные бесконтактные системы возбуждения (БСВ). К БСВ предъявляются требования [1]: быстродействие регулирования; высокое качество формы выходного напряжения.

В диодных БСВ сравнительно хорошее качество формы выходного напряжения. Требуемая скорость форсировки возбуждения БСМ достигается повышением напряжения возбуждения возбудителя. Главный недостаток диодной БСВ – медленное гашение поля.

Тиристорные БСВ практически безинерционны. При этом технико-экономические показатели тиристорных возбудителей (ТВ) невысоки. Регулирование нагрузки ТВ в основном осуществляется углом управления тиристорами, что приводит к существенному ухудшению качества формы выходного напряжения в номинальном режиме работы. Низкое качество формы выходного напряжения – главный недостаток тиристорной БСВ.

Качество кривой выходного напряжения может быть существенно улучшено при применении многофазного возбудителя. В бесконтактных синхронных турбогенераторах применяются возбудители с числом фаз якорных обмоток m = 44 [1] и более.

Для совершенствования тиристорных БСВ необходим полный анализ характеристик многофазных тиристорных выпрямителей в зависимости от угла управления тиристорами с учетом коммутационных перенапряжений, качества форм напряжений и токов, потерь на элементах системы. Подобный анализ нельзя выполнить аналитическими методами [2, 3].

В работах [4, 5] обосновывается методика расчета параметров защитных цепей многофазных диодных выпрямителей.

В работах [6-8] приводятся методики расчета характеристик многофазных диодных выпрямителей в системе схемотехнического моделирования Micro Cap.

Цель работы – разработка методик расчета нереверсивных тиристорных выпрямителей в зависимости от угла управления тиристорами в системе схемотехнического моделирования.

Материал и результаты исследований. На рис. 1 показана электрическая схема модели многофазного мостового тиристорного выпрямителя в системе схемотехнического моделирования Місго Сар. На схеме: $V_1 - V_m -$ источники ЭДС; $r_{i1} = r_{i2} = \ldots = r_{im} = r_{i,} \; x_{i1} = x_{i2} = \ldots = x_{im} = x_i - активные и индуктивные сопротивления источника питания (источника); тиристоры <math display="inline">T_{a1} \div T_{am}$ и $T_{k1} \div T_{km}$ шунтируются защитными RC-цепями; $R_d, L_d - активное сопротивление и индуктивность нагрузки; <math display="inline">V_{1\kappa} - V_{m\kappa} - дополнительные источники ЭДС, фазы которых смещены на 90° по отношению к одноименным фазам ЭДС основного источника питания. Цепи «управляющий электрод – катод» тиристоров шунтированы сопротивлениями смещения <math display="inline">R_s$.

Рис. 1 – Схема модели многофазного мостового тиристорного выпрямителя в системе Місго Сар

Расчет параметров защитных цепей вентилей выпрямителей БСМ проводится при ограничении перенапряжений во всех возможных режимах работы выпрямителя [4, 5]. Минимальная емкость трехфазного мостового выпрямителя $C_{Fmin} = 4 \cdot \tau_W^2 / (9 \cdot L_i)$, где τ_W – время восстановления запирающих свойств вентиля. Активное сопротивление, определяемое на границе © А. М. Галиновский, Е. А. Ленская, 2015

апериодического режима переходного процесса, $R_{fm} = \sqrt{3} \cdot \tau_W/C_{Fmin}$. Емкость защитной цепи трехфазного мостового выпрямителя $C_{F3} = k_{CF} \cdot C_{Fmin}$, где $k_{CF} = 2 \div 5$. Активное сопротивление $R_F = k_{RF} \cdot R_{Fm}$, где $k_{RF} < k_{CF}$. В m-фазном мостовом выпрямителе $C_{Fm} \approx 3C_{F3}/m$. В выпрямителе с нулевой схемой преобразования C_F в два раза больше, чем в мостовом (трехфазном или многофазном) выпрямителе.

При анализе выпрямителей применяется система относительных единиц нагрузки неуправляемого трехфазного мостового выпрямителя (о.е.н.), в которой базовыми величинами приняты напряжение холостого хода и ток короткого замыкания:

$$U_{d0} = \frac{3\sqrt{3}}{\pi} A_i; I_{dk} = \frac{A_i}{Z_i}; U_{d^*} = \frac{U_d}{U_{d0}}; I_{d^*} = \frac{I_d}{I_{dk}}$$

где A_i , z_i – амплитуда ЭДС и полное сопротивление трехфазного источника.

Методики расчета тиристорных выпрямителей БСМ в системе схемотехнического моделирования разработаны на базе методик расчета диодных выпрямителей [6-8]. Алгоритм расчета тиристорных выпрямителей приведен в табл. 1. Принятые обозначения: I_d, U_d, P_d – ток, напряжение и мощность нагрузки выпрямителя; $P_{i1}, \, Q_{i1}, \, S_{i1}, \, cos\phi_l -$ активная, реактивная, полная мощность, коэффициент мощности источника; рт, p_{Rf}, p_{Rs}, p_{ri} – потери на тиристорах, в защитных цепях вентилей, на сопротивлениях смещения и в источнике соответственно; p_{Σ} – суммарные потери; Δp – погрешность определении активных мощностей; η – КПД выпрямителя; I_i, I_{i1} – действующие значения полного тока и 1-ой гармоники тока источника; $\lambda_i = I_{il}/I_i$; $k_{i1} = I_d/I_i$; $k_S -$ коэффициент увеличения расчетной мощности источника; Id* Ud* - ток и напряжение нагрузки в о.е.н.; kiu - коэффициент высших гармоник напряжения выпрямителя; k_{su} - коэффициент искажения напряжения выпрямителя; $M_Z = z_i/R_d$ – относительная величина сопротивления источника питания.

Характеристики выпрямителей строятся по результатам расчетов в квазиустановившихся или переходных режимах работы при интегрировании величин по времени. При расчете в переходных режимах работы в оперативную память записываются только текущие числовые значения величин i_d, u_d, p_{i1}, q_{i1}, i_i, p_T, p_{RF} и p_{Rs} (пункты № 1-8 табл. 1), частота управления тиристорами меньше частоты источника питания f_i.

Построим характеристики трехфазного мостового тиристорного выпрямителя в зависимости от угла управления тиристорами α_u при коротком замыкании с режима холостого хода.

Параметры схемы. Источник питания: $A_i = 80.5$ B; $f_i = 100$ Гц ($f_i = 400$ Гц); $z_i = 0.93$ Ом. Тиристоры типа B25RIA120, время восстановления запирающих свойств $t_W = 2.55$ мкФ, $R_S = 500$ Ом. Защитная цепь: $k_{CF} = 5$; $k_{RF} = 0.6 \cdot k_{CF}$. Нагрузка: $L_D = 0.07$ Гн. Блок сигналов управления: частота управления $f_u = 99.75$ Гц; длительность сигналов управления $T_{SU} = 120^\circ$.

Габлица 1 – Д	Алгоритм	расчета	тиристорных	выпрямителей
---------------	----------	---------	-------------	--------------

No	Обозна-	Единицы	Формула
п./п.	чение	измерения	ат.
1	I _d	А	$\frac{1}{T}\int_{0}^{1} i_{d} dt$
2	U _d	В	$\frac{1}{T}\int_{0}^{T}u_{d}dt$
3	P _{i1}	Вт	$\frac{1}{T} \int_{0}^{T} \left(\sum_{n} e_{ij} \cdot i_{ij} \right) dt$
4	Q _{i1}	BAP	$\frac{1}{T} \int_{0}^{T} \left(\sum_{n} e'_{ij} \cdot i_{ij} \right) dt$
5	I _i	Α	$\frac{1}{T}\int_{0}^{T}\sqrt{\frac{1}{m}\sum_{m}i_{ii}^{2}}dt$
6	p _T	Вт	$\frac{1}{T} \int_{0}^{T} \left(\sum_{n} u_{Tj} \cdot i_{Tj} \right) dt$
7	p_{Rf}	Вт	$\frac{1}{T} \int_{0}^{T} \left(\sum_{n} i_{Fj}^{2} R_{F} \right) dt$
8	p _{Rs}	Вт	$\frac{1}{T} \int_{0}^{T} \left(\sum_{n} i_{RS}^{2} \cdot R_{S} \right) dt$
9	S _{i1}	BA	$\sqrt{P_{i1}^2 + Q_{i1}^2}$
10	I _{i1}	А	$S_{i1}/(m_i \cdot E_i)$
11	P _d	Вт	$U_d \cdot I_d$
12	p_{ri}	Вт	$m\cdot I_i^2\cdot r_i$
13	p_{Σ}	Вт	$p_i + p_T + p_{Rf} + p_{RS}$
14	Δр	-	$\frac{P_{i1} - P_d - p_{\Sigma}}{P_{i1} + P_d + p_{\Sigma}}$
15	I_{d^*}	о.е.н.	$\mathbf{I}_d / \mathbf{I}_{dk}$
16	$\overline{U_{d^*}}$	о.е.н.	U_d/U_{d0}
17	k _{i1}	-	I_d/I_{i1}
18	λ_{i}	-	I_{i1}/I_i
19	$\cos \phi_1$	-	P_{i1}/S_{i1}
20	η	-	P_d/P_{i1}
21	k _s	-	$1/(\cos \varphi_1 \cdot \lambda \cdot \eta)$
22	k _{iu}	-	$\sqrt{\frac{1}{T} \int_{0}^{T} \left(\frac{u_{d}}{Ud} \right)^{2} - 1} dt$
23	k _{su}	-	$\sqrt{1+k_{iu}^2}$
24	Mz	-	$\pi \cdot I_{d^*}/(3 \cdot \sqrt{3} \cdot U_{d^*})$

На рис. 2 показаны внешние характеристики выпрямителя при $\alpha_u = 0^0$, $\alpha_u = 60^0$ и разных значениях относительной величины активного сопротивления источника питания ($k_r = r_i/x_i$): 1) $k_r = 0$; 2) $k_r = 0.25$; 3) $k_r = 0.5$; 4) $k_r = 0.75$; 5) $k_r = 1$.

На рис. 3 – напряжение и ток нагрузки выпрямителя в зависимости от угла управления при $k_r = 0.172$, $R_d = 7$ Ом. Из рисунка: изменение угла управления ти-

ристорами от 0° до 90° не приводит к увеличению наибольшего напряжения на тиристорах.

На рис. 4 показаны расчетные соотношения (а) и потери выпрямителя (б) в зависимости от угла управления тиристорами при f_i=100 Гц (сплошные линии) и $f_i = 400$ Гц (пунктирные линии).

С изменением угла управления тиристорами остаются практически неизменными коэффициент связи

Рис. 2 - Внешние характеристики трехфазного мостового тиристорного выпрямителя при $\alpha_{\rm u} = 0^0$, $\alpha_{\rm u} = 60^{\circ}$ и разных величинах коэффициента k_r

Рис. 3-Напряжение и ток нагрузки трехфазного мостового тиристорного выпрямителя в зависимости от угла α_u при номинальном сопротивлении нагрузки

Выводы.

1. Созданы методики расчета характеристик вращающихся нереверсивных тиристорных выпрямителей бесконтактных синхронных машин (БСМ) в зависимости от угла управления тиристорами. В основу между токами нагрузки и источника питания выпрямителя k_{i1}, коэффициент искажения тока источника λ_i. Расчетные соотношения $k_s,~k_{su},,~k_{i1},~\lambda_i,~\eta_p,~cos\phi_1,~u_{d^*}$ и потери p_{ri}, p_T практически не зависят от частоты источника питания f_i. От частоты f_i существенно зависят потери на защитных цепях вентилей p_{Rf.}

 $k_s, k_{su}, k_{i1}, \lambda_i, \eta_p, \cos \varphi_1, u_{d*}$

положены методики расчета моделей диодных выпрямителей БСМ в системе схемотехнического моделирования. При создании методик расчета выпрямителей принято известное допущение о синусоидальности результирующей ЭДС воздушного зазора вспомогательной электрической машины БСМ. Характеристики выпрямителей рассчитываются при интегрировании величин по времени в квазиустановившихся или переходных режимах работы.

2. Расчет защитных цепей тиристорных выпрямителей проводится при угле управления $\alpha_u = 0^0$ аналогично методике расчета диодных выпрямителей. При этом изменение угла управления тиристорами от 0^0 до 90^0 не приводит к увеличению наибольшего напряжения на тиристорах.

3. Полученные закономерности изменений расчетных соотношений тиристорных выпрямителей в зависимости от угла управления тиристорами позволяют совершенствовать методику проектирования тиристорных возбудителей, провести сопоставительный анализе диодных и тиристорных возбудителей БСМ.

Список литературы: 1. Глебов И.А. Научные основы проектирования систем возбуждения мощных синхронных машин // Ленинград. –Наука. – 1988. – 322 с. 2. Беркович Е. И., Ковалев В. Н., Ковалев Ф. И. и др. Полупроводниковые выпрямители // М.– Энергия. – 1978. – 448 с. 3. Абрамович Б.Н., Круглый А.А. Возбуждение, регулирование и устойчивость синхронных двигателей // Ленинград. – Энергоатомиздат. – 1983. – 128 с. 4. Галиновский А.М., Ленская А.М., Эрхард Айхофер. Методика расчета защитных цепей вентилей выпрямителя // Технічна електродинаміка. – 2005. – №4. – С. 43-50. 5. Галиновский А.М., Ленская Е.А., Сенько В.И., Анпилогов Н.Г. Коммутационные перенапряжения в многофазных преобразователях // Електротехнічні та комп'ютерні системи. Одеський НПІ. – Київ. – Техніка. – 2011. – № 03 (79). – С. 319-322. 6. Галиновский А.М. Параметры и характеристики полупроводниковых выпрямителей вентильных генераторов // Гірнича електромеханіка та автоматика: наук.-техн. зб. – 2012. – Вип. 88. – С. 48-54. **7**. Галиновский А.М., Бабенко О.Ю., Ленская Е.А. Определение основних соотношений выпрямителей вентильных генераторов по результатам расчетов переходных режимов // Електромеханічні і енергозберігаючі системи. – Кременчук: КрНУ. – 2012. – № 3. – С. 425-430. **8**. Галиновский А.М. Исследование электромашинно-вентильных преобразователей бесконтактных синхронных и асинхронизированных машин в системе схемотехнического моделирования // Електротехніка і електромеханіка. – 2013. – № 5. – С. 23-29.

Bibliography (transliterated): 1. Glebov I. A. Scientific bases of systems designing of excitation of powerful synchronous machines. Leningrad: Science. 1988. 322 p. Print. 2. Berkovich E.I., Kovalev V.N., Kovalev F.I. and others. Semiconductor rectifiers. Moscow: Energiya. -1978. - 448 p. Print. 3. Abramovych B. N., Kruhliy A. A. Arousal, regulation and the stability of synchronous motors. Lenyngrad: Energoatomisdat - 1983. - 128 p. Print. 4. Galinovsky A.M., Lenska E.A., Erhard Ayhofer. Methods of calculating protection circuits valves rectifier. Technical electrodynamic. 2005. No 4. 43-50. Print. 5. Galinovsky A.M., Lenskaya E.A., Senko V.I., Anpilogov N.G. Switching overvoltage in multiphase transformers. Electrotechnical and computer systems. Kiev. Engineering. 2011. No 3. Pp. 319-322. Print. 6. Galinovsky A.M. Parameters and characteristics of semi-conductor rectifiers of gated generators. Mountain electromecanics and automatics: scientific and technical collection. 2012. No 88. 48-54. Print. 7. Galinovsky A.M., Babenko O. U., Lenska E.A. Determination of the main rectifiers ratios of gated generators using the calculation results of transient modes. Electromechanical and energy saving systems. Kremenchuk: KrNU. 2012. No 88. 425-430. Print. 8. Galinovsky A.M. Research into velve-engine transducers of brushless synchronous and asynchronized machines in a circuit simulation sistem. Elektrotehnika i elektromehanika - Electrical engineering & electromechanics. 2013. No 5. 23-29. Print.

Поступила (received) 15.10.2015.

Галиновский Александр Михайлович – кандидат технических наук, доцент, Национальный технический университет Украины «Киевский политехнический институт», доцент кафедры электромеханики, тел.: (044) 258-01-54; e-mail: alga40@mail.ru.

Galinovsky Alexander Mikhailovich – Candidate of Technical Sciences (Ph. D.), Docent, National technical university of Ukraine "Kiev polytechnic institute", Docent at the department of Electromechanics, tel.: (044) 258-01-54; e-mail: alga40@mail.ru.

Ленская Елена Александровна – начальник отдела, Государственное агентство по энергоэффективности и энергосбережению Украины, тел.: (044) 558-58-35; e-mail: A_Lenskay@ukr.net. Lenskaya Elena Aleksandrovna – State Agency on Energy Efficiency and Energy Saving of Ukraine, tel.: (093) 861-71-71; e-mail: A_Lenskay@ukr.net