<u>ПЕРЕРОБКА ТА ЗБЕРІГАННЯ</u> СІЛЬСЬКОГОСПОДАРСЬКОЇ ПРОДУКЦІЇ

УДК 635.649.8.037.53

ДИНАМИКА ВИТАМИНА С В ПЕРЦЕ СЛАДКОМ ПРИ НИЗКОТЕМПЕРАТУРНОМ ХРАНЕНИИ И ДЕФРОСТАЦИИ

Загорко Н.П., к.т.н., доц., член-кор. МААО Коляденко В. В., ст. преподаватель Таврический государственный агротехнологический университет г. Мелитополь, Украина Тел. +38061944-81-03 e-mail: zagorko.n@mail.ru

Анномация. Рассматривается проблема хранения растителной продукции, богатой биологически активными веществами, с целью сохранения ее исходных качеств методом замораживания.

Ключевые слова: витами С, хранение, перец сладкий, потери, замораживание, дефростация.

Постановка проблемы. В последней четверти двадцатого столетия было доказано, что витамин С является важнейшим
природным веществом, которое принимает участие почти во
всех химических реакциях, протекающих в нашем организме,
способен помогать организму преодолевать почти все его болезни и недуги. Он сильный антиоксидант и играет важную
роль в регулировании окислительно-восстановительных процессов, принимает участие в синтезе колагена и проколагена,
обмене фолиевой кислоты и железа, стероидных гормонов и
катехоламинов. Он является фактором защиты организма от
стрессов, усиливает репаративные процессы, устойчивость к
инфекциям, сердечно-сосудистым заболеваниям, регулирует
сворачиваемость крови, регулирует проницаемость капиляров,

улучшает кровоторную деятельность, имеет противовоспалительное и противоалергическое действие[4]. Основным поставщиком витамина С есть растительная продукция, которая имеет сезонную выраженность потребления.

Основным заданием для достижения цели есть увеличение сроков потребления такой продукции путем разработки новых и усовершенствования существующих способов хранения с наименьшими потерями исходного качества. Один из таких способов – хранение при низких отрицательных температурах.

Вопрос оптимизации ассортимента замороженой продукции состоит в подборе наиболее богатых продуктов жизнедеятельными веществами: углеводами, клетчаткой, пектиновыми веществами, витаминами, минеральными и дугими. К их числу относится перец сладкий (семейство Solanacea Pers, вид Capsicum annum Z). Основное достоинсто перца состоит в том, что он является поставщиком большой группы витаминов: витамина Р (140-170 мг/100г продукции), являющегося синергистом витамина С (усиливает биологический эффект, задерживая его окисление), рибофлавина(0,02-0,1мг/100г), фолиевой кислоты (0,1-0,17мг/100г), никотиновой кислоты (0,5-0,6мг/100г), Р-активные вещества представлены флавонолами, катехинами, антоцианами. По содержанию витамина С перец сладкий превосходит все овощные культуры и содержит в зависимости от условий выращивания и степени зрелости в среднем от 100 до 300 мг/100 г сырого вещества, а у некоторых сортов - до 400мг/100 г. Приятный специфический аромат определяется наличием в нем эфирных масел (0,1-1,25мг/100 г с.в.)

Анализ последних исследований. Наиболее лабильным компонентом биохимического состава растительной продукции, по мнению многих исследователей, является аскорбиновая кислота. Уменьшение ее количества с давних пор считалось индикатором окислительной порчи продукта. Вымерзание влаги путем сублимации увеличивает поверхность окисления наружных слоев. Во время хранения отмечается окислительное превращение аскорбиновой кислоты в дегидроаскорбиновую и дикетогулоновую. Исследованиями многих авторов показано [1], что превращения аскорбиновой кислоты обусловлены ферментативными процессами, катализируемыми, в частности, аскорбиназами, фенолазами, тканевыми пероксидаза-

ми или же химическими процессами, происходящими особенно интенсивно в среде с повышенным рН. По мнению некоторых исследователей [2] скорость окисления витамина С пропорциональна в квадрате содержанию воды в продукте. Бланширование перед замораживанием не только снижает потери витамина С (15-17% исходного содержания), чем в овощах не бланшированных (от 40 до 64%), но и ухудшает их вкус.

Потери аскорбиновой кислоты в овощах в процессе замораживания достаточно высокие и составляют от 18 до 34%. Высокая сохраняемость его в перце сладком обусловлена довольно высоким содержанием в нем каротиноидов и Рактивных веществ, которые владеют антиоксидантной активностью.

По данным авторов работ [3] потери витамина С в плодах перца технической стадии зрелости после замораживания и последующего хранения составили 5,7%; в плодах биологической зрелости — 19,7% по сравнению с исходным. Результаты исследований показали, что при замораживании и хранении в замороженном виде в течение 8 месяцев содержание аскорбиновой кислоты уменьшилось соответственно на 84 и 39%. При этом отмечено, что сохраняемость витамина С в плодах биологической стадии зрелости выше на 20%, чем в плодах технической стадии зрелости.

Авторы работы [4] отмечают, что аскорбиновая кислота коррелирует с рядом физико-химических и биохимических по-казателей и может служить в качестве тест-показателя влияния температуры замораживания и длительного хранения.

Цель исследований. Изучение динамики аскорбиновой кислоты в процессе замораживания, длительного низкотемпературного хранения и дефростации перца сладкого. Для исследования были взяты пять сортов перца, районированных в юго-восточной части Украины: Атлант, Антей, Айвенго, Ласточка и Солнышко в технической стадии зрелости. Замораживание перца производили сухим способом и в маринадной заливке, расфасованым в пластиковую тару.

По результатам наших исследований содержание аскорбиновой кислоты в свежем виде во всех пяти сортах высокое. Наиболее богаты сорта Атлант и Солнышко, содержание в которых составляет 220,10 и 214,00 мг/100 г сырой массы. У

сорта Антей — 189,51 мг/100 г, Айвенго — 187,01 мг/100 г, Ласточка — 162,80 мг/100 г. Наибольшие потери аскорбиновой кислоты отмечены на стадии замораживания: сорт Солнышко — 18,5%; Антей — 17,5%; Атлант — 14,2%; Ласточка — 13,2%; Айвенго — 12,7% (рис. 1).

Рисунок 1 - Динамика аскорбиновой кислоты в период длительного низкотемпертурного хранения в сортах: 1 — Атлант; 2 — Антей; 3 — Ласточка; 4 — Айвенго; 5 — Солнышко

Через девять месяцев хранения сохраняемость аскорбиновой кислоты составила соответственно вышеперечисленных сортов 73,6; 68,2; 75,0; 66,5; 69,3%.

По мнению авторов [1, 2] превращение аскорбиновой кислоты в замороженных плодах сводится к ее окислению до дегидроаскорбиновой, а затем до 2,3-дикетогулоновой. Первое соединение физиологически активно, второе – в диетическом плане не эффективно.

Несмотря на потери аскорбиновой кислоты плодами перца в процессе замораживания и длительного хранения, его остаточное количество высоко. По сравнению с другими, даже свежими овощами, его количество превосходит в десятки раз. Это подтверждает уникальность хранения ценной растительной сельскохозяйственной продукции, такой как перец слад-

кий, при низких температурах с целью сохранения ее высоких пишевых достоинств.

Проведенный дисперсионный анализ позволил выявить влияние сорта и срока хранения на содержание показателей пищевой ценности плодов перца.

Так, на содержание сухих веществ и сахара большое влияние оказывал сорт перца, на содержание витамина C – как влияние сорта так и срока хранения.

В результате регрессионного анализа выведены линейные зависимости всех показателей и построены графики по пяти сортам.

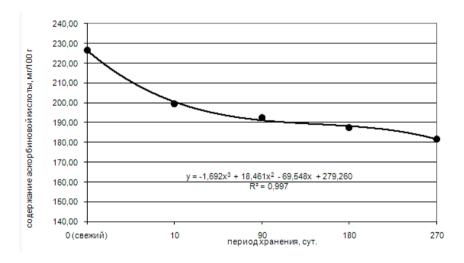


Рисунок 2 - Динамика содержания аскорбиновой кислоты в перце, замороженном в маринаде

По результатам исследованй перца сладкого, замороженного в маринаде, выявлено, что содержание аскорбиновой кислоты остается высоким (сохраняемость 80,1%), хотя она и является водорастворимым и очень лабильным соединением (рис. 2). Однако, предотвращающая роль маринада для доступа кислорода воздуха и применение упаковки с гермитизацией продукции, способствовали сохранению аскорбиновой кислоты - важного химического элемента в период всего срока хранения. Сказалось также высокое содержание каротиноидов и фенольных веществ, как естественных антиоксидантов.

Содержание биологически активного вещества, такого, как витамин С, в перце, замороженном в маринаде, подчиняется общим законам динамики при замораживании. Но количество его остается более стабильным на протяжение всего периода хранения и потери его значительно меньше, чем у перца, замороженного россыпью воздушным способом.

В подтверждение правильности выбранных способов замораживания перца сладкого нами было исследовано влияние периода дефростации и хранения в размороженном виде в воздушной среде на динамику содержания аскорбиновой кислоты, как индикатора этого процесса.

Наличие аскорбиновой кислоты исследовали через 0, 2, 4, 6 и 10 часов после начала дефростации. Причем, варианты повторяли сразу после замораживания, а также трех, шести и девяти месяцев хранения в замороженном виде (рис. 3).

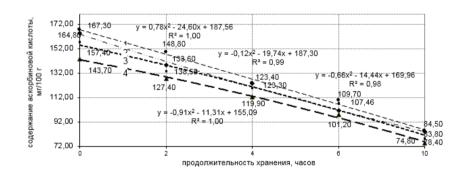


Рисунок 3 - Изменение содержания аскорбиновой кислоты в период дефростации и хранения в размороженном виде в плодах перца, замороженных россыпью: 1 — сразу после замораживания; 2 — после 3 месяцев хранения; 3 — после 6 месяцев хранения; 4 — после 9 месяцев хранения

Исходя из средних показателей динамики аскорбиновой кислоты в процессе размораживания, существенной разницы в потере по вариантам хранения в замороженном состоянии, не выявлено. После двух часов хранения при температуре 20°С дефростированных плодов потери витамина С составили от 11,1 до 16,0% по всем вариантам хранения (от 10 суток до 270).

Несколько иное состояние динамики аскорбиновой кислоты наблюдалось в перце, замороженном в маринаде (рис. 4). После двух часов хранения в размороженом виде сохраняемость составила от 97,00 до 93,25%.

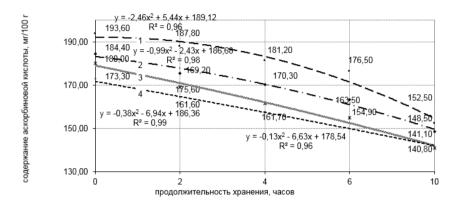


Рисунок 4 - Изменение содержания аскорбиновой кислоты в период дефростации и хранения в размороженном виде в плодах перца, замороженных в маринаде: 1 — сразу после замораживания; 2 — после 3 месяцев хранения; 3 — после 6 месяцев хранения; 4 — после 9 месяцев хранения

Еще через два часа снижение составило от 6,41 до 10,17%. Через 10 часов хранения размороженного в воздушной среде перца в маринаде при температуре 20°C сохраняемость витамина С составила 81,2-78,4%.

Таким образом, установлено, что жидкая среда предохраняет доступ кислорода воздуха к плодам перца сладкого, оказывая защитное действие. Сохраняемость витамина С в перце, замороженном в маринаде, в сравнении с перцем, замороженном россыпью, при дефростации и десятичасовом хранении была на 40-50% выше. Эти показатели подтверждаются результатами статистического анализа.

Установлено, что содержание витамина С в перце обратно пропорционально продолжительности хранения в дефростированном виде. Коэффициент детерминации плодов перца, замороженных россыпью и в маринаде составляет соответ-

ственно 0,96 и 1,00. Влияние срока хранения в замороженном состоянии по вариантам мало существенно.

Выводы: установлено, что в плодах перца сладкого, замороженного россыпью, после дефростации остаточное количество аскорбиновой кислоты составляет 74,84-84,50 мг/100 г. Т.е. этого количества достаточно для удовлетворения суточной потребности человеческого организма в этом витамине. Но в таком виде перец не употребляется в пищу, а требует термической кулинарной обработки. Следовательно, происходит дальнейшее снижение содержание аскорбиновой кислоты примерно на 30-50%.

Перец, замороженный в маринаде, можно употреблять сразу же после дефростации до требуемой температуры (8-10°С), как готовый продукт без последующей кулинарной обработки. Это позволит сократить потери в 1.3 – 1.5 раза БАВ и полностью удовлетворить суточную потребность в аскорбиновой кислоте и других витаминах без существенных потерь.

ЛИТЕРАТУРА

- 1. Білашенко М. Комора вітамінів перець овочевий //Дім, сад, город.-1999.-№5. С. 8-9
- 2. Бархатов В.Ю. Изменение качества сладкого перца при замораживании / В.Ю. Бархатов, Т.Н. Прудникова, Т.В. Фрампольская, Межвузовский сб. науч. тр. СПбТИХП, 1993 С. 10-14
- 3. Загорко Н.П. Зміни біохімічного складу перцю за різніх способів тривалого низькотемпературного зберігання / 3б. наук. пр. Полтавської ДАА, Т. 4 2005. -C.198-203
- 4. Витамин С (аскорбиновая кислота) [електронный ресурс] / Все о витаминах.- режим доступа: http://www.vitamini.ru/vitamin-21html

BIBLIOGRAPHY

- 1. Bilashenko M. Pantry vitamins vegetable pepper // Home and Garden, horod.-1999.-№5. S. 8-9
- 2. Barhatov V.U. Changing quality pepper at freeze/ V.U. Barhatov, T.N. Prudnykov, T.V. Frampolskaya Intercollegiate Sat scientific. tr. SPbTIHP, 1993 S. 10-14

- 3. N.P. Zahorko Changes in biochemical composition of pepper for different ways to prolonged low temperature storage / Coll. Science. pr. Poltava SAA Vol 4 2005 S.198-203
- 4. Vitamin C (ascorbic acid) [Electron resource] / All about vitaminah.- access mode: http://www.vitamini.ru / vitamin-21html

DYNAMICS OF VITAMIN C IN SWEET PEPPER IN LOW TEMPERATURE STORAGE AND DEFROSTATION

N.P. Zagorko, V.V. Kolyadenko

Summary

The article considers the problem of storage of vegetable products, rich in biologically active substances with the aim of preserving their original quality by freezing.

Key words: vitamin C, storage, sweet pepper, losses, freezing, defrostation.

УДК 636.085.52:66.099.4

ЕКОЛОГІЧНО БЕЗПЕЧНА ТЕХНОЛОГІЯ КОНВЕРСІЇ ВІДХОДІВ ПИВОВАРІННЯ НА КОРМОВІ ЦІЛІ

Філіппов П. Д., студент *
Троїцька О.О., к.б.н., с.н.с.
Запорізька державна інженерна академія (ЗДІА)
м. Запоріжжя, Україна
Тел/факс +38061-212-38-87
Бакарджиєв Р.О., к.т.н., доц.
Таврійський державний агротехнологічний університет
м. Мелітополь, Україна
Тел. +380619422341

^{*} Публікується по рекомендації: к.т.н., доц., чл.-кор. МААО Караєва О.Г.