УДК 539.172.17

= ЯДЕРНА ФІЗИКА =

Yu. N. Pavlenko¹, V. L. Shablov², V. O. Kyva¹, O. K. Gorpinich¹, N. L. Doroshko¹, A. V. Stepanyuk¹, O. I. Rundel¹, L. L. Dulger³, D. V. Kasperovych³

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv ² Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia ³ Taras Shevchenko National University, Kyiv

DEUTERON AND TRITON DECAYS OF ⁵He RESONANCES IN THE REACTION ⁷Li(d, α)⁵He*

The processes of excitation and decay of high excited ⁵He resonances into the d + t channel have been studied in the reaction ⁷Li(d, α)⁵He^{*} at the energy of deuteron beam E_d = 37 MeV. In the inclusive spectra of α -particles in addition to the contributions of well known ⁵He resonances, the high excited states with excitation energies $E_x \sim 19$ and $E_x > 20$ MeV were observed. Cluster decay of these resonances was also identified in α d- and α t-coincidence spectra. For the first time, the decay into the d + t channel was observed for ⁵He resonances with $E_x = 22$ and 26 MeV. The determined resonance energy and width are partly agreed with the R-matrix analysis of data obtained at the study of d + ³H and n + ⁴He binary reactions. The possible Coulomb effects in three-particle channels of reaction ⁷Li(d, α)⁵He^{*}

Keywords: three-particle nuclear reaction, kinematically complete experiment, coincidence spectra, high excited resonances, decay channels, Coulomb interaction, resonance parameters.

Introduction

The properties of light nuclei may essentially differ depending on the number of neutrons. It is striking illustrated by the chain of helium isotopes where the increasing the neutron number leads to the transformation of stable ⁴He nucleus in unbound ⁵He. Then we have weakly bound ⁶He, unbound ⁷He, weakly bound ⁸He and unbound ⁹He nucleus [1]. The properties of resonances of light nuclei and their cluster structure attend considerably to research, that is promoted by modern possibilities of correlation measurements [2, 3]. But this time, cluster decay and structure of high excited states of light nuclei, including the ⁵He nucleus, are insufficiently studied.

In this work the processes of excitation and decay of ⁵He* resonances into the d + t channel have been investigated in the reaction ⁷Li(d, α)⁵He* at the energy of deuteron beam of 37 MeV, which value allowes to study the excitation spectrum of ⁵He up to $E_x \sim 40$ MeV.

Besides well known ⁵He resonances [4], the high excited states with excitation energies $E_x \sim 19$ and $E_x > 20$ MeV were observed in the inclusive spectra of α -particles from reaction ⁷Li(d, α)⁵He (see also [5]). Analysis of α -particle's inclusive spectra for this reaction is rather complicated because of very large background caused by different accompanying three- and four-particle reaction channels [5]. The most reliable data can be obtained by correlation measurements that provide the full determination of kinematics of three-particle reactions. In this work cluster decay of a number of ⁵He* resonances was observed in α - and α -coincidence spectra.

Experimental method

The differential cross sections of reaction ⁷Li(d, α)⁵He have been measured at the cyclotron U-240 of the Institute for Nuclear Research at deuteron beam energy of 37 MeV. The target with the thickness of 1.5 mg/cm^2 has been produced by rolling of lithium film with natural content of ⁷Li. The reaction products have been detected by ΔE -Emethod using four ΔE -E-telescopes of silicon detectors with the thickness of ~ 50 μ m for ΔE - and 550 µm for *E*-detectors. The thickness of ΔE -detectors have been specified in a way to have a low energy threshold of registration preserving appropriate mass resolution. Solid angles of detector were $\Omega_1 = 0.92 \cdot 10^{-3} \text{ sr}$ telescopes and $\Omega_2 = 1.82 \cdot 10^{-2}$ sr. Total energy resolution of products registration reaction was mainly determined by the dispersion of the beam energy, solid angles of detectors and energy losses of particles in the target and approximately consists of 1.5 % of the beam energy. The signals from the detectors were processed for multi-parameter measurements of inclusive and coincidence spectra of reaction products in the same manner as described in details in [6]. Data analysis has been performed using different procedure with two- and onedimensional histograms for particle identification, determination of their energies and selection of reaction channels [6].

Fig. 1, *a* shows typical $E-\Delta E$ -spectrum measured by one telescope in coincidences with the reaction products registered by the second telescope which

© Yu. N. Pavlenko, V. L. Shablov, V. O. Kyva, O. K. Gorpinich, N. L. Doroshko, A. V. Stepanyuk, O. I. Rundel, L. L. Dulger, D. V. Kasperovych, 2012 was placed at the opposite side from the beam. As it is shown the range of energy measurements for protons and deuterons was restricted by the thickness of *E*-detectors, which was insufficient to stop these high energy particles.

Two-dimensional spectrum of alpha-particle

coincidences with tritons is shown in the Fig. 1, *b*. The events located in the upper part of this spectrum correspond to the three-particle reaction channel $d + {}^{7}Li \rightarrow \alpha + t + d$. The events in the below region of spectrum are caused by four-particle reaction $d + {}^{7}Li \rightarrow \alpha + t + p + n$.

Fig. 1. ΔE -*E*-spectrum measured at the angles $\theta_1 = 30^\circ$, $\varphi_1 = 180^\circ$ in coincidences with all products of reaction d + ⁷Li which were registered at the angles $\theta_2 = 79^\circ$, $\varphi_2 = 0^\circ$ (*a*). Two-dimensional plot of energy spectrum of α t-coincidences in the exit reaction channels d + ⁷Li $\rightarrow \alpha$ + t + d and d + ⁷Li $\rightarrow \alpha$ + t + p + n, which were measured at the angles $\theta_{\alpha} = 30^\circ$, $\theta_t = 79^\circ$, $\varphi_1 - \varphi_2 = 180^\circ$ (*b*). Arrows indicate the location of three- and four-particle reaction channels.

The measurements of time coincidence spectra have been also used for evaluation of background which was caused by the registration of random coincidence events (Fig. 2). Peaks marked by number 1 correspond to the registration of two reaction products induced by deuteron interaction from one bunch of deuteron beam and contain real coincidence events and random time coincidences. Peaks marked by number 2 correspond to the registration of two reaction products from two different bunches of beam and contain only random coincidence events. As it is shown, the contributions of random coincidences in time spectra, which correspond to the registration of all reaction products (see Fig. 2, *a*), as well as in the spectra of coincidences of α -particles with tritons (see Fig. 2, *b*) are rather small. The ratio of random to real coincidence events is equal 0.25 and 0.05 for the spectra in Fig. 2, *a* and *b*, respectively. This ratio for events corresponding the three-particle exit channels $\alpha + t + d$ (see Fig. 1, *b*) and $\alpha + d + t$ is equal ~ 0.01. Thus, the background contribution of random coincidences can be neglected for reaction channels ⁷Li(d, α t)d and ⁷Li(d, α d)t.

Fig. 2. Total time coincidence spectrum measured by two telescopes at the registration of all products of reaction $d + {}^{7}Li$ at the angles $\theta_1 = 30^{\circ}$, $\theta_2 = 79^{\circ}$, $\varphi_1 - \varphi_2 = 180^{\circ}$ (*a*). Time spectrum of α t-coincidences measured at the same angles (*b*). Peaks in the spectra marked as 1 and 2 correspond to the events from neighboring bunch of deuteron beam.

Analysis and results

Alpha-particle energy spectra measured in coincidences with deuterons and tritons are shown in the Fig. 3. These spectra (triple differential cross section) were obtained from two-dimensional spectra of αt - (see Fig. 1, *b*) and αd -coincidences using usual procedures [6]. Correlation spectra have been decomposed in some Breit - Wigner curves which correspond to the contributions of ⁵He resonances:

$$\frac{d^{3}\sigma}{d\Omega_{\alpha}d\Omega_{d(t)}dE_{\alpha}} = \frac{C_{i}}{(E_{d-t} - E_{R})^{2} + \Gamma^{2}/4}\rho(E_{\alpha}), \quad (1)$$

where $E_R = E_x - E_{b(dt)}$ and Γ are resonance energy and width, $E_{b(dt)}$ is bound energy of deuteron and triton in ⁵He nucleus, $E_{d-t} = f(E_{\alpha})$ is relative energy in (d-t)-subsystem depending on the alpha-particle energy E_{α} , $\rho(E_{\alpha})$ is the phase space factor [7] for three-particle reaction ⁷Li(d, α d)t or ⁷Li(d, α t)d, C_i is the coefficient which determines the intensity of resonance with number *i*.

Besides ⁵He resonances the excitation and decay of ⁶Li and ⁷Li resonances can be also observed in coincidence spectra from reactions ⁷Li(d, α d)t and ⁷Li(d, α t)d. These resonances are formed in accompanying reaction channels ⁷Li(d, d)⁷Li* and ⁷Li(d, t) ⁶Li*. The position of possible contributions of ⁶Li and ⁷Li resonances can be calculated using the kinematical dependencies of relative energies in $(\alpha-d)$ - and $(\alpha-t)$ -subsystems on the alpha-particle energy E_{α} . The dependencies of excitation energy of ⁵He, ⁶Li and ⁷Li resonances on the energy of one of the reaction products can be obtained using simple equation: $E_x = E_{rel} + E_b$, where E_{rel} , E_b are the relative energy and bound energy of one of the cluster in corresponding subsystem, respectively. As it shown in Fig. 4, the known resonances of ⁶Li and ¹Li [4] do not contribute to the high energy part of measured coincidence spectra ($E_a > 19$ MeV). The well known "thermonuclear" resonance of 'He with excitation energy $E_x = 16.75$ MeV cannot be also observed in the analyzed spectra.

Fig. 3. Energy spectra of alpha-particle measured in coincidences with deuterons (*a*) and tritons (*b*) for reactions ⁷Li(d, α d)t and ⁷Li(d, α t)d at E_d = 37 MeV, $\theta_{\alpha} = 30^{\circ}$, $\theta_{d(t)} = 79^{\circ}$, $\varphi_{\alpha} - \varphi_{d(t)} = 180^{\circ}$. Solid lines represent the results of the fit by equation (1) for each resonance (see Table). Thick line corresponds to the sum of all resonance contributions.

Fig. 4. The dependencies of excitation energy of ⁵He, ⁶Li and ⁷Li resonances, which can be observed in the reactions ⁷Li(d, α d)t (*a*) and ⁷Li(d, α t)d (*b*), on the alpha-particle energy E_{α} . Calculations were performed under kinematical conditions specified in the capture of Fig. 3.

Extracted values of ⁵He resonance parameters are given in the Table. Some resonances which contributions can be overlapped with accompanying resonances of ⁶Li and ⁷Li have been excluded from consideration. Resonances with $E_x \sim 19$ MeV have been previously identified at the study of reactions ²H(α , pd)³H [8] and ³H(α , dd)³H [9] in kinematically complete experiments. The results of many inclusive experiments indicate the presence only one broad level with $E_x \sim 20$ MeV [4]. Existence of three resonances with $E_x = 19.14$, 19.26, 19.31 MeV, approximately equal width $\Gamma = 3.56$, 3.96, 3.02 MeV and different spin follows from multichannel R-matrix analysis of experimental data for binary reactions d + ³H and n + ⁴He [10].

The parameters obtained for the second resonance with $E_x \sim 20$ MeV are agreed well with Rmatrix analysis of binary reactions ($E_x = 19.96$ MeV, $\Gamma = 1.92 \text{ MeV}$ [10]) and reaction ²H(⁶He, dt)³H $(E_x = 19.7 \pm 0.3 \text{ MeV} [11])$. Third resonance with $E_x = 22 \text{ MeV}$ and $\Gamma = 1.7 \text{ MeV}$ have not been observed at the study of binary reaction [10]. R-matrix analysis [10] has suggested the presence of broad $(\Gamma \sim 5 \text{ MeV})$ resonances two with approximately equal excitation energy $E_x = 23.97$ and 24.06 MeV and different spins. We identified more narrow resonance ($\Gamma \sim 1.2 - 1.9$ MeV) with excitation energy $E_x \sim 24$ MeV and the resonance with $E_x \sim 26 \text{ MeV}$ ($\Gamma \sim 2 \text{ MeV}$) which has not been previously observed.

⁵He resonance parameters obtained for reactions ⁷Li(d, αd)t and ⁷Li(d, αt)d. Numbers in the first column correspond to the numbers of lines in Fig. 3

Resonance	Reaction ⁷ Li(d, α d)t		Reaction ⁷ Li(d, α t)d	
number	E_x , MeV	Γ, MeV	E_x , MeV	Γ, MeV
1	18.7 ± 0.1	0.5 ± 0.2	18.5 ± 0.2	0.7 ± 0.2
2	20.4 ± 0.2	1.7 ± 0.6	20.3 ± 0.2	1.8 ± 0.5
3	22.2 ± 0.4	1.7 ± 0.5	22.0 ± 0.2	1.7 ± 0.5
4	23.6 ± 0.4	1.9 ± 0.5	24.2 ± 0.2	1.2 ± 0.5
5	25.7 ± 0.3	2.1 ± 0.8	26.4 ± 0.3	2.0 ± 0.8

Coulomb effects at the decay of ⁵He resonances in the reaction ⁷Li(d, α)⁵He*

All the products of studied reactions are charged. In this case the observable parameters of ⁵He resonance can be modified by three-body Coulomb effects [12 - 15]. The following expression for the squared modulus of the amplitude of reaction

$$p + T \rightarrow k + R \rightarrow k + i + j \tag{2}$$

can be used to estimate the influence of the Coulomb field of accompanying fragment k on the decay of resonance R into the channel i + j [13]:

$$\left|T\left(\vec{k}_{ij}\vec{p}_{k}\right)\right|^{2} = \frac{2\pi\xi}{e^{2\pi\xi} - 1} \cdot \frac{e^{2\xi \operatorname{Arcctg}\varepsilon}}{1 + \varepsilon^{2}} \cdot \left|F\right|^{2} \left|\chi_{ij}\left(\vec{k}_{ij}\right)\right|^{2}, \quad (3)$$

$$\varepsilon = 2(E_{ij} - E_R^0) / \Gamma^0, \quad \xi = \eta - \nu, \tag{4}$$

$$\eta = \eta_{ki} + \eta_{kj} = Z_k Z_i \mu_{ki} / k_{ki} + Z_k Z_j \mu_{kj} / k_{kj} , \quad (5)$$

where E_{ij} is relative energy of particles *i* and *j*; E_R^0 , Γ^0 are the position and width of isolated resonance *R* formed in binary reactions; *v*, η are the parameters corresponding the Coulomb interaction of accompanied particle *k* with resonance *R* as a whole system and with decay products, respectively; Z_k , Z_i , Z_j are the particle's charges; μ_{ki} , μ_{kj} , k_{ki} , k_{kj} are the reduced masses and relative momenta of the particles k and i(j), respectively; F is the function depending on the angular momenta; $\chi_{ij}(\vec{k}_{ij})$ is the decay vertex function. In general case the parameter v is the complex value $v = v_1 - iv_2$ [14, 15]. For resonances far from decay threshold ($E_R^0 >> \Gamma^0$) the value v_2 is negligible small and parameter v can be simply determined as $v = Z_k Z_R \mu_{kR} / k_{kR}$.

The resonance curves, which can be observed in kinematically complete experiments at the study of reaction ⁷Li(d, α d)t at different angles of deuteron decay θ_d in the ⁵He resonance center of mass, have been calculated in accordance with the parameterization of reaction amplitude (3). The decay into $\alpha + n$ channel in the reaction 'Li(d, $\alpha\alpha$)n is also considered with the aim to estimate the integrated Coulomb effects which can be observed in the inclusive spectra of α -particles from reaction ⁷Li(d, α)⁵He^{*}.

The calculations for ⁵He resonance with excitation energy $E_x = 19,96$ MeV and width $\Gamma^0 = 1,92$ MeV are shown in Fig. 5. The parameters $E_R^0 = E_x - E_b$ and Γ^0 , which were used in the calculations for both decay channels, correspond to the values obtained for isolated ⁵He resonance formed in the binary reactions d + ³H and n + ⁴He [10].

At the decay of short lived resonances with $\Gamma^0 > 1$ MeV in the reactions like (2) the scattering of accompanying particle on the resonance as a whole

system can be neglected. In this approach, the effective Coulomb parameter ξ is determined by the interaction of accompanying α -particle only with decay products ($\xi = \eta$). As it is shown from Fig. 5,

such approach predicts greater shift and broadening of resonance curve than approximation with the Coulomb parameter $\xi = \eta - v$.

Fig. 5. The calculations of the resonance curves corresponding the excitation and decay of ⁵He* resonance with $E_x = 19.96$ MeV and $\Gamma^0 = 1.92$ MeV [10] in the reaction ⁷Li(d, α d)t (a) and ⁷Li(d, $\alpha\alpha$)n (b) at $E_d = 37$ MeV. Thick solid line corresponds to the calculation for isolated ⁵He* resonance ($\xi = 0$). Other lines represent the calculations in both approach (see text) according to which the Coulomb parameter is defined as $\xi = \eta - \nu$ (lines 1) and $\xi = \eta$ (lines 2). The angles $\theta_{d(\alpha)} = 0^\circ$ and $\theta_{d(\alpha)} = 180^\circ$ correspond to the deuteron or α -particle decay in the resonance center of mass in the direction towards the accompanying α -particle and vice versa, respectively. The calculation for the decay angle $\theta_d = 180^\circ$ in the approximation $\xi = \eta - \nu$ almost coincides with the curve corresponding the isolated decay of ⁵He*, so it is not shown in the Figure.

Therefore, the maximal shift and width change of resonance curves caused by the Coulomb field of accompanying α -particles exceed the value of 200 – 300 keV. For example, the contribution of ⁵He*(19.96 MeV) decay into α + n channel provides the broadening of resonance curves to the value $\Gamma = 2.4$ MeV. This value is in consistent with data obtained from the inclusive spectra of α -particles, which were measured for the reaction ⁷Li(d, α)⁵He at the same energy of deuteron beam $E_d = 37$ MeV [5], as well as with compilation data for different three-particle reactions [4]. Similar changes of resonance parameters should be observed at the decay of other high excited ⁵He resonances in the reaction ⁷Li(d, α)⁵He*.

Conclusions

The decay of high excited ⁵He resonances with $E_x > 17$ MeV into the d+t channel have been studied in the three-particle reactions ⁷Li(d, α d)t and ⁷Li(d, α t)d at deuteron beam energy $E_d = 37$ MeV. In kinematically complete experiments a new data for

⁵He resonance energies and widths have been obtained. The data within experimental error are consistent partly with those obtained by other authors (see [4, 8 - 11]), but the decay of resonances with $E_x \sim 22$ and 26 MeV into the d + t channel was observed for the first time. Determined parameters for some resonances are also agreed with the extended R-matrix analysis of data for binary reactions d + ³H and n + ⁴He [10].

Performed calculations show that three-particle Coulomb effects are quite observable in the studied reactions for ⁵He resonances with $E_x \sim 18 - 26$ MeV. The different resonance position and width can be observed in kinematically complete experiments at the different angles of resonance decay. This results the broadening of resonances in the inclusive spectra of accompanying particle in which the integrated over decay angles and decay channels effect is observed.

Obtained results will be useful to clarify the causes of inconsistency between an existing data as well as to test the various theoretical models.

REFERENCES

- Golovkov M.S., Grigorenko L.V., Fomichev A.S. et al. New insight into the low-energy ⁹He spectrum // Phys. Rev. C. - 2007. - Vol. 76, No. 2. - P. 021605 (1 - 5).
- Grenier F., Chbihi A., Roy R. et al. Multi-particle correlation function to study short-lived nuclei // Nucl. Phys. A. - 2008. - Vol. 811, No. 3-4. - P. 233 - 243.
- Caamano M., Cortina-Gil D., Mittig W. et al. Experimental study of resonance states in ⁷H and ⁶H // Phys. Rev. C. - 2008. - Vol. 78, No. 4. - P. 044001 (1 - 8).
- 4. *Ajzenberg-Selove F*. Energy levels of light nuclei A = 5 10 // Nucl. Phys. A. 1988. Vol. 490, No. 1. P. 1 225.
- Pavlenko Yu.N., Gorpynych O.K., Dobrikov V.N. et al. Experimental study of the excited states of helium isotopes in the reactions ⁷Li(d,^{3,4,6}He) at deuteron energy of 37 MeV // Nucl. Phys. At. Energy. - 2006. -No. 2(18). - P. 16 - 27.
- Pavlenko Yu.N., Kiva V.O., Kolomiets I.N. et al. The methods of multiparameter correlation measurements for the study of nuclear reactions // Scient. papers of the Inst. for Nucl. Res. - 2005. - No. 2(15). - P. 151 - 161.
- Ohlsen G.G. Kinematic relations in reactions of the form A + B→C + D + E // Nucl. Instr. and Meth. -1965. - Vol. 37. - P. 240 - 248.
- 8. *Treado P.A., Lambert J.M., Kane R.J. et al.* Excited States of ⁴He and ⁵He from Sequential α + d Reactions at E_{α} = 70 MeV // Phys. Rev. C. 1973. Vol. 7,

No. 5. - P. 1742 - 1750.

- Gorpinich O.K., Povoroznyk O.M., Yachmeniov A.A. The structure of high excited states of ⁵He nucleus // Izv. RAN. Ser. Phys. - 2005. - Vol. 69. - P. 745 - 747.
- Tilley D.R., Cheves C.M., Godwin J.L. et al. Energy levels of light nuclei A = 5, 6, 7 // Nucl. Phys. A. -2002. - Vol. 708, No. 1. - P. 3 - 163.
- Ter-Akopian G.M., Fomichev A.S., Golovkov M.S. et al. New insights into the resonance states of ⁵H and ⁵He // Eur. Phys. J. 2005. Vol. A25. P. 315 320.
- Komarov V.V., Popova A.M., Karmanov F.I. et al. Scattering properties of two-fragment systems produced by many-particle reactions // Phys. of Elem. Part. and Atom. Nucl. - 1992. - Vol. 23, No. 4. -P. 1035 - 1087.
- 13. *Komarov V.V., Popova A.M., Shablov V.L.* Dynamics of the systems of few quantum particles. Moscow University. M., 1996. 276 p.
- Shablov V.L., Tyras I.A. Modeling the dynamics of the final state interaction in nuclear reactions with charged particles // Izv. Vuzov. Ser. Nucl. Energetic. - 2007. -Vol. 3, No. 2. - P. 127 - 131.
- Pavlenko Yu.N., Dobrikov V.N., Doroshko N.L. et al. Decay properties of short lived resonances of light nuclei in many-particle nuclear reactions // Int. Journal of Modern Physics E. - 2010. - Vol. 19, Issue 5 - 6. -P. 1220 - 1226.

Ю. М. Павленко, В. Л. Шаблов, В. О. Кива, О. К. Горпинич, Н. Л. Дорошко, А. В. Степанюк, О. І. Рундель, Л. Л. Дулгер, Д. В. Касперович

ДЕЙТРОННИЙ І ТРИТОННИЙ РОЗПАДИ РЕЗОНАНСІВ ⁵Не В РЕАКЦІї ⁷Li(d, α)⁵Не

Процеси збудження та розпаду високозбуджених резонансів ⁵Не в канал d + t досліджено в реакції ⁷Li(d, α)⁵Не при енергії пучка дейтронів $E_d = 37$ MeB. В інклюзивних спектрах α -частинок, крім внесків добре відомих резонансів, спостерігалися високозбуджені стани з енергіями збудження $E_x \sim 19$ і $E_x > 20$ MeB. Кластерний розпад цих резонансів також ідентифіковано в спектрах α d- i α t-збігів. Уперше спостерігався розпад у канал d + t резонансів ⁵Не з $E_x = 22$ і 26 MeB. Визначені резонансні енергії та ширини частково узгоджуються з R-матричним аналізом даних, отриманих при дослідженні бінарних реакцій d + ³H i n + ⁴He. Аналізуються також можливі кулонівські ефекти для різних умов спостереження високозбуджених резонансів ⁵He в реакції ⁷Li(d, α)⁵He.

Ключові слова: тричастинкова ядерна реакція, кінематично повний експеримент, спектри збігів, високозбуджені резонанси, канали розпаду, кулонівська взаємодія, резонансні параметри.

Ю. Н. Павленко, В. Л. Шаблов, В. А. Кива, О. К. Горпинич, Н. Л. Дорошко, А. В. Степанюк, А. И. Рундель, Л. Л. Дулгер, Д. В. Касперович

ДЕЙТРОННЫЙ И ТРИТОННЫЙ РАСПАДЫ РЕЗОНАНСОВ ⁵Не В РЕАКЦИИ ⁷Li(d, α)⁵Не

Процессы возбуждения и распада высоковозбужденных резонансов ⁵Не в канал d + t исследованы в реакции ⁷Li(d, α)⁵Не при энергии пучка дейтронов $E_d = 37$ MэB. В инклюзивных спектрах α -частиц, кроме вкладов хорошо известных резонансов, наблюдались высоковозбужденные состояния с энергиями возбуждения $E_x \sim 19$ и $E_x > 20$ МэB. Кластерный распад этих резонансов также идентифицирован в спектрах α -и α -совпадений. Впервые наблюдался распад в канал d + t резонансов ⁵Не с $E_x = 22$ и 26 МэB. Определенные резонансные энергии и ширины частично согласуются с R-матричным анализом данных, полученных при исследовании бинарных реакций d + ³H и n + ⁴He. Анализируются также возможные кулоновские эффекты для разных условий наблюдения высоковозбужденных резонансов ⁵He в реакции ⁷Li(d, α)⁵He.

Ключевые слова: трехчастичная ядерная реакция, кинематически полный эксперимент, спектры совпадений, высоковозбужденные резонансы, каналы распада, кулоновское взаимодействие, резонансные параметры.

Надійшла 02.11.2012 Received 02.11.2012