УДК 539.172.17

= ЯДЕРНА ФІЗИКА =

А. Т. Рудчик¹, К. А. Черкас¹, А. А. Рудчик¹, Є. І. Кощий², С. Клічевскі³, К. Русек^{4,5}, В. А. Плюйко⁶, О. А. Понкратенко¹, С. Ю. Межевич¹, Вал. М. Пірнак¹, Р. Сюдак³, Я. Хоіньскі⁵, Б. Чех³, А. Щурек³

¹ Інститут ядерних досліджень НАН України, Київ

² Харківський національний університет ім. В. Н. Каразіна, Харків

³ Інститут ядерної фізики ім. Г. Нєводнічаньского Польської АН, Краків, Польща

⁴Національний центр ядерних досліджень, Варшава, Польща

5 Лабораторія важких іонів Варшавського університету, Варшава, Польща

⁶ Київський національний університет імені Тараса Шевченка, Київ

МЕХАНІЗМИ РЕАКЦІЇ ⁶Li(¹⁸O, ¹⁷O)⁷Li ТА ПОТЕНЦІАЛ ВЗАЄМОДІЇ ЯДЕР ⁷Li + ¹⁷O

Отримано нові експериментальні дані диференціальних перерізів реакції ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O})^{7}\text{Li}$ при енергії $E_{\text{лаб.}}({}^{18}\text{O}) = 114$ МеВ для основних та збуджених станів ядер вихідного каналу. Експериментальні дані проаналізовано за методом зв'язаних каналів реакцій із включенням у схему зв'язків каналів пружного й непружного розсіяння ядер ${}^{6}\text{Li} + {}^{18}\text{O}$ та найпростіших реакцій одно- й двоступінчастих передач нуклонів і кластерів. У розрахунках перерізів реакції для вхідного каналу використано потенціал взаємодії ядер ${}^{6}\text{Li} + {}^{18}\text{O}$, параметри якого визначено з аналізу даних пружного розсіяння ядер. Спектроскопічні амплітуди нуклонів і кластерів розраховано в рамках трансляційно-інваріантної моделі оболонок. Параметри потенціалу взаємодії ядер ${}^{7}\text{Li} + {}^{17}\text{O}$ визначено методом підгонки теоретичних перерізів до експериментальних даних реакції. Досліджуються ізотопічні відмінності потенціалів взаємодії ядер ${}^{7}\text{Li} + {}^{17}\text{O}$ ядер ${}^{7}\text{Li} + {}^{18}\text{O}$ та механізми реакції.

Ключові слова: реакції з важкими іонами, метод зв'язаних каналів реакцій, спектроскопічні амплітуди, оптичні потенціали, механізми реакцій.

Вступ

Ядерні реакції передач, як відомо, є важливим засобом дослідження структури й взаємодії нестабільних ядер. Особливо важливу роль відіграють вони при дослідженні взаємодії нестабільних ядер з коротким часом життя, з яких неможливо утворити вторинні пучки для безпосереднього вивчення взаємодії їх із стабільними ядрами мішеней. А отримання відомостей про взаємодію двох короткоживучих нестабільних ядер взагалі можливо тільки за допомогою реакцій передач. Така можливість була, зокрема, реалізована для визначення параметрів взаємодії ⁸Ве з ядрами ¹³С [1], ¹⁵N [2], ⁹Ве [3] і ¹⁵N [4] та ядер ⁸Li + ¹⁷O [5] i ⁹Be + ¹⁶N [6]. У цих роботах досліджувалась також ізотопічна залежність параметрів ядро-ядерних потенціалів, отриманих з аналізу як експериментальних даних реакцій, так і даних пружного й непружного розсіяння ядер. Це важливо для одержання відомостей про зв'язок параметрів оптичних потенціалів із структурою ядер.

У даній роботі досліджувалась реакція ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O})^{7}\text{Li}$ при енергії $E_{\text{лаб.}}({}^{18}\text{O}) = 114 \text{ MeB}$, відомостей про яку в літературі поки що немає, з метою одержання експериментальних даних

диференціальних перерізів реакції та визначення параметрів потенціалу взаємодії ядер ⁷Li + ¹⁷O. Експериментальних даних про пружне розсіяння ядер ⁷Li + ¹⁷O, на основі яких можна було б визначити потенціал їхньої взаємодії, немає в літературі, зважаючи, мабуть, на мізерне природне поширення ізотопу ¹⁷O (0,038 %).

У роботі досліджувались також ізотопічні відмінності параметрів потенціалів взаємодії ядер ⁷Li + ¹⁶O [7] і ⁷Li + ¹⁸O [8], отриманих з аналізу пружного й непружного розсіяння цих ядер, та параметрів (⁷Li + ¹⁷O)-потенціалу, визначених у даній роботі.

Методика експерименту

Диференціальні перерізи ⁶Li(¹⁸O, ¹⁷O)⁷Li вимірювались одночасно з пружним і непружним розсіянням іонів ¹⁸O ядрами ⁶Li [9] на циклотроні С-200Р Варшавського університету при енергії $E_{\text{лаб.}}(^{18}\text{O}) = 114 \text{ MeB.}$ Розкид енергії пучка іонів на мішені не перевищував 0,5 %. В експерименті використовувалась самопідтримна мішень літію товщиною ~ 900 мкг/см² із ~ 85 %-ним збагаченням ізотопом ⁶Li.

Реєстрація продуктів реакцій проводилась трьома ΔE -E-спектрометрами з кремнієвими

© А. Т. Рудчик, К. А. Черкас, А. А. Рудчик, Є. І. Кощий, С. Клічевскі, К. Русек, В. А. Плюйко, О. А. Понкратенко, С. Ю. Межевич, Вал. М. Пірнак, Р. Сюдак, Я. Хоіньскі, Б. Чех, А. Щурек, 2012 ΔE -детекторами товщиною 30, 40 і 67 мкм та *E*-детекторами товщиною ~ 1 мм. В експерименті застосовувалась електроніка стандарту САМАС та накопичувально-аналізуюча система SMAN [10] на базі персонального комп'ютера, що забезпечувала візуалізацію та зберігання експериментальної інформації у вигляді двовимірних

$\Delta E(E)$ -спектрів.

Типові двовимірні $\Delta E(E)$ -спектри продуктів реакцій ⁶Li(¹⁸O, O)Li для спектрометра з ΔE детектором товщиною 67 мм показано на рис. 1. Видно, що експериментальна ΔE -E-методика забезпечувала ідентифікацію продуктів реакцій як за зарядами, так і за масами.

Рис. 1. Типові $\Delta E(E)$ -спектри продуктів реакцій ⁶Li(¹⁸O, O)Li при енергії $E_{\text{лаб.}}(^{18}\text{O}) = 114 \text{ MeB.}$

Рис. 2. Типові енергетичні спектри ¹⁷О з реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li при енергії $E_{\text{лаб.}}(^{18}\text{O}) = 114 \text{ MeB}$ з неперервним фоном від багаточастинкових реакцій (*a*) та без нього (залишковий спектр) (б).

Рис. 3. Типові енергетичні спектри ⁷Li з реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li при енергії $E_{\rm лаб.}(^{18}O) = 114$ MeB з неперервним фоном від багаточастинкових реакцій (*a*) та без нього (залишковий спектр) (*б*).

Типові енергетичні спектри ¹⁷О та ⁷Li, отримані проектуванням на *E*-вісь відповідних локусів двовимірного спектра, показано на рис. 2 і 3 відповідно. На рис. 2, a і 3, a представлено

експериментальні спектри з неперервними фонами від багаточастинкових реакцій та інших процесів, які наближувались параметризованими функціями

$$N(E) = \sum_{i} N_{i}(E) = \sum_{i} N_{0i} \left[1 + \exp\left(-\frac{E - E_{1i} + E_{2i}/2}{H_{1i}}\right) \right]^{-1} \left\{ 1 - \left[1 + \exp\left(-\frac{E - E_{1i} - E_{2i}/2}{H_{2i}}\right) \right]^{-1} \right\}$$
(1)

методом підгонки параметрів E_{1i} , E_{2i} , H_{1i} , H_{2i} до мінімальних значень зареєстрованих подій (суцільні криві на рис. 2, *a* і 3, *a*). Отримані після віднімання фону залишкові енергетичні спектри показано на рис. 2, *б* і 3, *б*, де стандатним способом позначено ідентифікацію піків, що відповідають основним та збудженим станам ядер ¹⁷О і ⁷Li. Піки залишкових спектрів наближувались симетричними гауссіанами

$$N(E) = N_{0i} \exp\left[0.5 \frac{\left(E - E_{0i}\right)^2}{h_i^2}\right],$$
 (2)

де N_{0i} , E_{0i} та h_i – максимальне число відліків, кінетична енергія розсіяного іона в *i*-му стані, отримана з кінематичних розрахунків двочастинкових реакцій, та півширина *i*-го піка відповідно. Для параметрів h_i використовувалось середнє

значення ізольованих піків або природна півширина відповідного рівня ядра. Гауссіани підганялись до експериментальних спектрів за χ^2 -критерієм зміною лише параметрів N_{0i} . Підгонка здійснювалась за допомогою програми РЕАКFIT.

Площі гауссіанів використовувались для обчислення диференціальних перерізів реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li. Похибки в обчисленні площ частково перекритих піків не перевищували 20 %. Для повністю перекритих піків ці похибки становили 30 - 40 %. Для абсолютизації експериментальних даних реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li використовувався нормувальний множник пружного розсіяння іонів ¹⁸O ядрами ⁶Li, яке одночасно вимірювалось із даною реакцією.

Поміряні диференціальні перерізи реакції ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O})^{7}\text{Li}$ при енергії $E_{\text{лаб.}}({}^{18}\text{O}) = 114$ MeB для основних та збуджених станів ядер ${}^{17}\text{O}$ і ${}^{7}\text{Li}$ показано на рис. 4 - 7.

Рис. 4. Диференціальні перерізи реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li при енергії $E_{\text{лаб.}}(^{18}\text{O}) = 114 \text{ МеВ}$ для основних станів ядер ¹⁷O і ⁷Li. Криві — МЗКР-розрахунки для різних типів передач нуклонів і кластерів (пояснення в тексті).

Аналіз експериментальних даних

Методи розрахунків

Експериментальні дані реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li аналізувались за МЗКР з використанням ядроядерного потенціалу типу Вудса - Саксона з об'ємним поглинанням

Рис. 5. Диференціальні перерізи реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li при енергії $E_{\text{лаб.}}(^{18}\text{O}) = 114 \text{ МеВ для збудженого стану}$ 0,478 МеВ ядра ⁷Li та стану 0,871 МеВ ядра ¹⁷O. Криві – МЗКР-розрахунки для передачі нейтрона.

Рис. 7. Те ж саме, що на рис. 5, але для інших збуджених станів ядра ⁷Li.

$$V(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_s \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(3)

та кулонівського потенціалу рівномірно зарядженої кулі

$$V_{C}(r) = \begin{cases} Z_{P}Z_{T}e^{2}(3-r^{2}/R_{C}^{2})/2R_{C}, & r \leq R_{C}, \\ Z_{P}Z_{T}e^{2}/r, & r > R_{C}, \end{cases}$$
(4)

де $R_i = r_i(A_P^{1/3} + A_T^{1/3})$ (i = V, W, C) та A_P, Z_P і A_T, Z_T – масові й зарядові числа налітаючого іона P та мішені T відповідно. Для потенціалу кулонівської взаємодії ядер в усіх розрахунках використоувався параметр $r_C = 1,25$ фм. У МЗКР-розрахунках у схему зв'язку каналів включались пружне й непружне розсіяння ядер ⁶Li + ¹⁸О згідно із схемами переходів, представлених у роботі [9, рис. 5], та реакції одно- й двоступінчастих передач, діаграми яких показано на рис. 8.

Необхідні для МЗКР-розрахунків спектроскопічні амплітуди S_x нуклонів і кластерів x в ядерних системах A = C + x обчислювались методом Смірнова - Чувільського в рамках трансляційноінваріантної моделі оболонок (ТІМО) [11] за допомогою програми DESNA [12, 13]. Спектроскопічні амплітуди S_x подано в табл. 1.

$$\frac{^{6}\text{Li}}{^{18}\text{O}} \frac{^{7}\text{Li}}{^{17}\text{O}} + \frac{^{6}\text{Li}}{^{18}\text{O}} \frac{^{8}\text{Be}}{^{16}\text{N}} \frac{^{7}\text{Li}}{^{17}\text{O}} + \frac{^{6}\text{Li}}{^{18}\text{O}} \frac{^{5}\text{He}}{^{19}\text{F}} \frac{^{7}\text{Li}}{^{19}\text{F}} + \frac{^{6}\text{Li}}{^{18}\text{O}} \frac{^{19}\text{F}}{^{19}\text{F}} \frac{^{17}\text{O}}{^{19}\text{F}} + \frac{^{6}\text{Li}}{^{18}\text{O}} \frac{^{4}\text{He}}{^{18}\text{O}} \frac{^{19}\text{F}}{^{17}\text{O}} + \frac{^{6}\text{Li}}{^{18}\text{O}} \frac{^{19}\text{F}}{^{17}\text{O}} \frac{^{10}\text{F}}{^{18}\text{O}} \frac{^{10}\text{F}}{^{17}\text{O}} + \frac{^{6}\text{Li}}{^{18}\text{O}} \frac{^{10}\text{F}}{^{17}\text{O}} +$$

Рис. 8. Діаграми передач нуклонів і кластерів у реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li.

4	C	r	nL	S	4	C	r	nL	S
⁶ L i	с ³ н	л ³ Но	2S	0.943	¹⁰ B	<u>б</u> і	л (1	2D.	-0.115
6T i	11 ⁴ Не	d	$2S_{1/2}$	1,061	¹⁷ O	^{14}C	3 He	$2D_2$ $2D_{2}$	-0.577
6L i	5He	n	1 <i>P</i>	$-0.596^{(a)}$	170	¹⁵ N	d	2D 5/2 2P.	-0.552
LI	110	Р	$1 I_{1/2}$ 1 D	-0,590	170	16 _N	u n	$\frac{2I_2}{1D}$	-0,552
6 ₁ ;	D	a	$\frac{11}{2}$	0,007	0	19	þ	$11_{1/2}$ 1 D	-0,312
		u	$2S_0$	1,001	180	140		1 <i>F</i> 3/2	0,137
1L1 7-	1 H	α	$2P_1$	1,091	18 0	15	α	$3S_0$	-0,802
⁷ Li	⁺He	t	$2P_{3/2}$	-1,091	¹⁸ O	¹⁵ N	t	$3P_{1/2}$	-0,261
'Li	°Не	d	$2S_1$	-0,674	¹⁸ O	¹⁰ N	d	$2P_2$	$0,884^{(a)}$
			$1D_1$	-0,121	^{18}O	1 O	n	$1D_{5/2}$	$1,000^{(a)}$
_			$1D_3$	0,676	¹⁸ O	$^{1}O_{0,871}$	n	$2S_{1/2}$	$0,894^{(a)}$
Li	⁶ Li	n	$1P_{1/2}$	-0,657	¹⁸ O	$^{17}O_{3,055}$	n	$1P_{1/2}$	$0,994^{(a)}$
			$1P_{3/2}$	$-0,735^{(a)}$	18 O	$^{17}O_{3,841}$	n	$1F_{5/2}$	$-1,800^{(a)}$
⁷ Li _{0,478}	⁶ Li	n	$1P_{1/2}$	0,329 ^(a)	18 O	$^{17}O_{4,553}$	n	$1P_{3/2}$	0,703 ^(a)
-			$1P_{3/2}$	0,930	^{18}O	$^{17}O_{5,379}$	n	$1P_{3/2}$	0,703 ^(a)
⁷ Li _{4.63}	⁶ Li _{2.185}	n	$1P_{1/2}$	$-0,882^{(a)}$	$^{18}O_{1.928}$	$^{17}O_{3.841}$	n	$1P_{3/2}$	-0,450
		n	$1P_{3/2}$	-0,764	¹⁹ F	$^{17}\mathrm{O}$	d	$1D_2$	0,482
$^{7}Li_{668}$	⁶ Li	n	$1P_{3/2}$	-0,882				$1D_3$	-0,129
⁸ Be	⁶ Li	d	$2S_1$	2,217	¹⁹ F	^{18}O	р	$2S_{1/2}$	0,699
⁸ Be	⁷ Li	р	$1P_{3/2}$	1,234	²⁰ F	17 O	t	$2P_{1/2}$	$0,099^{(a)}$
⁹ Be	⁶ Li	t	$2P_{1/2}$	-0,192				$2P_{3/2}$	-0,132
			$2P_{3/2}$	$-0,215^{(a)}$				$1F_{7/2}$	-0,272
⁹ Be	⁷ Li	d	$2S_1$	$-0.226^{(a)}$	²⁰ F	^{18}O	d	$2D_2$	0,380
			$1D_1$	$0.111^{(a)}$	²¹ Ne	¹⁸ O	³ He	$3D_{3/2}$	0.269
			$1D_3$	$-0.624^{(a)}$	²² Ne	17 O	⁴ He	$4D_{2}^{3/2}$	$0.051^{(a)}$
10 B	⁷ Li	³ He	$2P_{3/2}$	0.418		-		$3\tilde{G_4}$	$0.198^{(a)}$
		_	$1F_{5/2}$	-0.104					- , - ,
			$1F_{7/2}$	0,347					

Таблиця 1. Спектроскопічні амплітуди S_x кластерів x у системах A = C + x

^(a) $S_{FRESCO} = (-1)^{J_C + j - J_A} \cdot S_x = -S.$

T + P	Е _{лаб.} , МеВ	<i>Е</i> _{с.ц.м.} , MeB	Назва набору параметрів	V ₀ , MeB	<i>r_V</i> , фм	<i>а_V</i> , фм	W _s , MeB	<i>r_w,</i> фм	<i>а_W</i> , фм	Літ.
${}^{6}\text{Li} + {}^{18}\text{O}$	114	28,50	A	175,6	0,800	0,763	14,0	1,250	0,763	[9]
$^{7}\text{Li} + {}^{17}\text{O}$	95	27,71	В	183,0	0,800	0,740	6,0	1,450	0,740	
$^{7}\text{Li} + {}^{18}\text{O}$	114	31,92	С	174,5	0,806	0,900	13,0	1,470	0,900	[8]
$^{16}O + ^{7}Li$	42	29,22	D	175,1	0,802	0,700	16,0	1,200	0,700	[7]

Таблиця 2. Параметри потенціалів взаємодії ядер

Хвильові функції відносного руху нуклонів і кластерів x у системах A = C + x обчислювалась стандартним способом підгонки глибини V_0 дійсного (C + x)-потенціалу типу Вудса - Саксона до експериментальних значень енергії зв'язку частинок x в ядрах A. При цьому використовувались параметри $a_V = 0,65$ фм і $r_V = 1,25 \cdot A^{1/3} / (C^{1/3} + x^{1/3})$ фм.

У МЗКР-розрахунках для вхідного каналу реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li використовувались параметри (⁶Li + ¹⁸O)-потенціалу, отримані з аналізу даних пружного й непружного розсіяння іонів ¹⁸O ядрами ⁶Li при енергії $E_{ла6}$ (¹⁸O) = 114 MeB [9], а параметри потенціалу взаємодії ядер вихідного каналу визначались методом підгонки МЗКР-перерізів до експериментальних даних реакції. Параметри потенціалів взаємодії ядер ⁶Li + ¹⁸O, ⁷Li + ¹⁸O i ⁷Li + ¹⁶O подано в табл. 2.

МЗКР-розрахунки проводились за допомогою програми FRESCO [14].

Аналіз даних реакції ⁶Li(¹⁸O, ¹⁷O)⁷Li

Диференціальні перерізи реакції ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O}){}^{7}\text{Li}$ при енергії $E_{\text{лаб.}}({}^{18}\text{O}) = 114$ MeB для основних станів ${}^{17}\text{O}$ і ${}^{7}\text{Li}$ показано на рис. 4. Криві – МЗКР-розрахунки для передачі нейтрона (крива <n>) та послідовних передач нуклонів і

кластерів d + p i p + d, d + t i t + d та α + ³He i ³He + α (криві <dp>, <dt> і < α ³He> відповідно, когерентні суми). Видно, що в даній реакції домінує передача нейтрона. Роль двоступінчастих передач другорядна. Ця обставина сприятлива для підвищення достовірності отриманих значень параметрів потенціалу взаємодії ядер вихідного каналу, оскільки МЗКР-перерізи на малих кутах в основному залежать від добутку спектроскопічних амплітуд нейтрона у системах ${}^{18}O = {}^{17}O + n i$ $^{7}Li = {}^{6}Li + n$ який можна скорегувати за даними діапазона цих кутів. Така корекція може бути потрібною перш за все для ядра ¹⁸О з 2*s*-1*d*-оболонки, для якої метод обчислення спектроскопічних амплітуд Смірнова -Чувільського потребує уточнення.

Диференціальні перерізи реакції 6 Li(18 O, 17 O) 7 Li при енергії $E_{лаб.}({}^{18}$ O) = 114 MeB для збуджених станів ядер 17 O i 7 Li показано на рис. 5 - 7. І в цих випадках домінує передача нейтрона, а двоступінчасті процеси відіграють другорядну роль. Тому на цих рисунках показано тільки МЗКР-розрахунки для передачі нейтрона. При цьому використовувався (7 Li + 17 O)-потенціал з такими ж параметрами, як і для основних станів ядер 17 O і 7 Li (див. табл. 2). Видно, що МЗКР-перерізи задовільно описують експериментальні дані в усьому діапазоні кутів.

Рис. 9. Порівняння дійсних та уявних частин потенціалів взаємодії ядер ⁷Li + ^{16, 17, 18}O. Крива <фолд.> - фолдінг-потенціал взаємодії ядер ⁷Li + ¹⁷O.

На рис. 9 порівнюються дійсні та уявні частини потенціалів взаємодії ядер ⁷Li + ¹⁷O, ⁷Li + ¹⁸O i ⁷Li + ¹⁶O. Видно, що дійсні частини цих потенціалів дещо відрізняються в периферійній області (рис. 9, *a*), а уявні частини – в усьому інтервалі взаємодії ядер (рис. 9, δ). На рис. 9, *в* дійсна частина (⁷Li + ¹⁷O)-потенціалу порівнюється з фолдінг-потенціалом, обчисленим за моделлю подвійної згортки з використанням нуклоннуклонного потенціалу МЗҰ Рейда (Reid)

$$\upsilon(s) = 7999 \frac{e^{-4s}}{4s} - 2134 \frac{e^{-2.5s}}{2.5s} - 276 \ (1 - 0.005 \frac{E_P}{A_P}) \ \frac{\delta(s)}{s^2},$$
(5)

де A_P і E_P - маса й енергія іона P в лабораторній системі. Для розрахунків фолдінг-потенціалу використовувалась програма DFPOT [15], а для розподілів нуклонів в ядрах ⁷Li і ¹⁷O – таблиці з роботи [16]. На рис. 9, *в* видно, що дійсна частина (⁷Li + ¹⁷O)-потенціалу добре узгоджується з фолдінг-потенціалом у периферійній області, де в основному відбуваються ядерні процеси при даній енергії.

Рис. 10. Диференціальні перерізи реакції ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O}){}^{7}\text{Li}$ при енергії $E_{\pi a \bar{b}}({}^{18}\text{O}) = 114 \text{ MeB}$ для основних станів ядер ${}^{17}\text{O}$ і ${}^{7}\text{Li}$. Криві – МЗКР-розрахунки для різних наборів параметрів потенціалу взаємодії ядер ${}^{7}\text{Li} + {}^{17}\text{O}$ (пояснення в тексті).

На рис. 10 порівнюються МЗКР-перерізи передачі нейтрона в реакції ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O})^{7}\text{Li}$ для основних станів вихідних ядер при використанні в розрахунках для (${}^{7}\text{Li} + {}^{17}\text{O}$)-потенціалу власного набору параметрів (крива) та наборів параметрів потенціалів взаємодії ядер ${}^{6}\text{Li} + {}^{18}\text{O}$, ${}^{7}\text{Li} + {}^{18}\text{O}$ і ${}^{7}\text{Li} + {}^{16}\text{O}$ (крива <A>, <C> і <D> відповідно). Видно, що найбільше відрізняються МЗКР-перерізи цієї реакції в області середніх та великих кутів, як і в пружному розсіянні ядер. Тому для пошуку реалістичних наборів параметрів потенціалів ядро-ядерної взаємодії дуже важливо використовувати експериментальні дані з широким діапазоном кутів вимірювань.

Основні результати та висновки

Отримано нові експериментальні дані диференціальних перерізів реакції ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O}){}^{7}\text{Li}$ при енергії $E_{\text{лаб.}}({}^{18}\text{O}) = 114 \text{ MeB}$ для основних та збуджених станів ядер ${}^{17}\text{O}$ і ${}^{7}\text{Li}$. Дану реакцію досліджено вперше.

Експериментальні дані реакції проаналізовано за МЗКР із включенням у схему зв'язку каналів пружного й непружного розсіяння іонів ¹⁸О ядрами ⁶Li та найпростіших реакцій одно- й двоступінчастих передач нуклонів і кластерів. У МЗКР-розрахунках для вхідного каналу використано оптичний потенціал взаємодії ядер ${}^{6}\text{Li} + {}^{18}\text{O}$, параметри якого визначено з аналізу пружного й непружного розсіяння іонів ¹⁸О ядрами ⁶Li при даній енергії, та спектроскопічні амплітуди нуклонів і кластерів, обчислені в рамках ТІМО. Параметри потенціалу взаємодії ядер ⁷Li + ¹⁷О визначено методом підгонки МЗКР-перерізів до експериментальних даних реакції. Установлено, що в цій реакції домінує передача нейтрона, а двоступінчасті процеси грають другорядну роль.

Отриманий (⁷Li + ¹⁷O)-потенціал порівнюється з потенціалами взаємодії ядер ⁷Li + ¹⁸O і ⁷Li + ¹⁶O. Виявлено ізотопічні відмінності в цих потенціалах, які дуже впливають на МЗКР-перерізи реакції в області середніх та великих кутів. Дійсна частина (⁷Li + ¹⁷O)-потенціалу добре узгоджується з відповідним фолдінг-потенціалом, обчисленим у рамках моделі подвійної згортки з МЗҮ-потенціалом Рейда.

СПИСОК ЛІТЕРАТУРИ

 Rudchik A.T., Momotyuk O.A., Budzanowski A. et al. Energy dependence of the ⁸Be + ¹³C interaction // Nucl. Phys. A. - 1999. - Vol. 660. - P. 267 - 279. Mechanism of the ${}^{12}C({}^{11}B, {}^{15}N)^{8}Be$ reaction and ${}^{8}Be + {}^{15}N$ optical-model potential // Eur. Phys. J. A - 2005. - Vol. 23. - P. 445 - 452.

2. Rudchik A.A., Rudchik A.T., Budzanowski A. et al.

3. Romanyshyn V.O., Rudchik A.T., Kemper K.W. et al.

⁸Be scattering potentials from reaction analyses // Phys. Rev. C. - 2009. - Vol. 79. - P. 054609.

- Rudchik A.T., Stepanenko Yu.M., Kemper K.W. et al. Comparison of the ⁷Li(¹⁸O, ¹⁷N)⁸Be and ¹⁸O(d, ³He)¹⁷N reactions // Phys. Rev. C. - 2011. -Vol. 83. - P. 024606.
- Rudchik A.T., Stepanenko Yu.M., Kemper K.W. et al. ⁸Li optical potential from ⁷Li(¹⁸O, ¹⁷O)⁸Li reaction analysis // Nucl. Phys. A. 2009. Vol. 831. P. 139 149.
- Rudchik A.T., Stepanenko Yu.M., Kemper K.W. et al. The ⁷Li(¹⁸O, ¹⁶N)⁹Be reaction and optical potential of ¹⁶N + ⁹Be versus ¹⁶O + ⁹Be // Nucl. Phys. A. - 2011. -Vol. 860. - P. 8 - 21.
- Rudchik A.T., Kemper K.W., Rudchik A.A. et al. Tensor analyzing powers and energy dependence of the ⁷Li + ¹⁶O interaction // Phys. Rev. C. 2007. Vol. 75. P. 024612.
- Rudchik A.A., Rudchik A.T., Kliczewski S. et al. Elastic and inelastic scattering of ⁷Li + ¹⁸O versus ⁷Li + ¹⁶O // Nucl. Phys. A. - 2007. - Vol. 785. - P. 293 - 306.
- 9. Рудчик А.Т., Зелінський Р.М., Рудчик А.А. та ін. Пружне й непружне розсіяння іонів ¹⁸О ядрами ⁶Li при енергії 114 МеВ та ізотопічні відмінності взаємодії ядер ^{6,7}Li + ¹⁸О та ⁶Li + ^{16,18}О // Ядерна фізика та енергетика. - 2012. - Т. 13, № 4. - С. 361 - 370.

- 10. Kowalczyk M. SMAN: A Code for Nuclear Experiments, Warsaw University report (1998).
- Smirnov Yu. F., Tchuvil'sky Yu. M. Cluster spectroscopic factors for the p-shell nuclei // Phys. Rev. C. -1977. - Vol. 15, No. 1. - P. 84 - 93.
- 12. Рудчик А.Т., Чувильский Ю.М. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). - Киев, 1982. - 27 с. - (Препр. / АН УССР. Ин-т ядерных исслед.; КИЯИ-82-12).
- Рудчик А.Т., Чувильский Ю.М. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1роболочки и анализ реакций многонуклонных передач // УФЖ. - 1985. - Т. 30, № 6. - С. 819 - 825.
- Thompson I.J. Coupled reaction channels calculations in nuclear physics // Comp. Phys. Rep. - 1988. -Vol. 7. - P. 167 - 212.
- 15. Cook J. DFPOT a program for the calculation of double folded potentials // Comp. Phys. Com. 1982.
 Vol. 25, Issue 2. P. 125 139.
- 16. De Vries H., De Jager C.W., De Vries C. Nuclear charge-density-distribution parameters from elastic electron scattering // Atomic Data and Nuclear Data Tables. - 1987. - Vol. 36 - P. 495 - 536.

А. Т. Рудчик, К. А. Черкас, А. А. Рудчик, Е. И. Кощий, С. Кличевски, К. Русек, В. А. Плюйко, О. А. Понкратенко, С. Ю. Межевич, Вал. Н. Пирнак, Р. Сюдак, Я. Хоиньски, Б. Чех, А. Щурек

МЕХАНИЗМЫ РЕАКЦИИ ⁶Li(¹⁸O, ¹⁷O)⁷Li И ПОТЕНЦИАЛ ВЗАИМОДЕЙСТВИЯ ЯДЕР ⁷Li + ¹⁷O

Получены новые экспериментальные данные дифференциальных сечений реакции ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O}){}^{7}\text{Li}$ при энергии $E_{\pi a 6.}({}^{18}\text{O}) = 114$ МэВ для основных и возбужденных состояний ядер выходного канала. Экспериментальные данные проанализированы методом связанных каналов реакций с включением в схему связей каналов упругого и неупругого рассеяния ядер ${}^{6}\text{Li} + {}^{18}\text{O}$ и наиболее простых реакций одно- и двухступенчатых передач нуклонов и кластеров. В расчетах сечений реакции для входного канала использован потенциал взаимодействия ядер ${}^{6}\text{Li} + {}^{18}\text{O}$, параметры которого определены из анализа данных упругого рассеяния этих ядер. Спектроскопические амплитуды нуклонов и кластеров рассчитаны в рамках трансляционно-инвариантной модели оболочек. Параметры потенциала взаимодействия ядер ${}^{7}\text{Li} + {}^{17}\text{O}$ определены методом подгонки теоретических сечений к експериментальным данным реакции. Исследованы изотопические отличия потенциалов взаимодействия ядер ${}^{7}\text{Li} + {}^{17}\text{O}$, ${}^{7}\text{Li} + {}^{18}\text{O}$ и механизмы реакции.

Ключевые слова: реакции с тяжелыми ионами, метод связанных каналов реакций, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.

A. T. Rudchik, K. A. Chercas, A. A. Rudchik, E. I. Koshchy, S. Kliczewski, K. Rusek, V. A. Plujko, O. A. Ponkratenko, S. Yu. Mezhevych, Val. M. Pirnak, R. Sudak, J. Choiński, B. Czech, A. Szczurek

THE ⁶Li(¹⁸O, ¹⁷O)⁷Li REACTION MECHANISMS AND ⁷Li + ¹⁷O POTENTIAL

Angular distributions of the ⁶Li(¹⁸O, ¹⁷O)⁷Li reaction were measured at $E_{lab}(^{18}O) = 114$ MeV for ground and excited states of exit nuclei. The data were analyzed within the coupled-reaction-channels method (CRC). The ⁶Li + ¹⁸O elastic and inelastic scattering channels as well as the simplest one- and two-step reactions were included in the coupled-reaction-channels scheme. In CRC calculations, the ⁶Li + ¹⁸O potential with parameters deduced from the elastic scattering data, was used for the entrance reaction channel. The spectroscopic amplitudes of nucleons and clusters were calculated within the translational-invariant shell model. The ⁷Li + ¹⁷O potential parameters were deduced by fitting ⁶Li(¹⁸O, ¹⁷O)⁷Li reaction data. Isotopic differences of the ⁷Li + ¹⁷O, ⁷Li + ¹⁸O and ⁷Li + ¹⁶O potential, as well as the reaction mechanisms are studied.

Keywords: heavy-ion reactions, coupled-reaction-channels method, spectroscopic amplitudes, optical potentials, reaction mechanisms.