УДК 539.172.17

= ЯДЕРНА ФІЗИКА =

С. Ю. Межевич¹, А. Т. Рудчик¹, К. Русек^{2,6}, Є. І. Кощий³, С. Клічевскі⁴, Г. В. Мохнач¹, А. А. Рудчик¹, С. Б. Сакута⁵, Р. Сюдак⁴, Б. Чех⁴, Я. Хоіньскі⁶, А. Щурек⁴

¹ Інститут ядерних досліджень НАН України, Київ ² Національний інститут ядерних досліджень, Варшава, Польща ³ Харківський національний університет ім. В. Н. Каразіна, Харків ⁴ Інститут ядерної фізики ім. Г. Нєводнічаньского, Краків, Польща ⁵ Національний дослідницький центр «Курчатовський інститут», Москва, Росія ⁶ Лабораторія важких іонів Варшавського університету, Варшава, Польща

МЕХАНІЗМИ РЕАКЦІЇ ¹⁴С(¹¹В, ⁹Ве)¹⁶N ПРИ ЕНЕРГІЇ 45 МеВ ТА ПОТЕНЦІАЛ ВЗАЄМОДІЇ ЯДЕР ⁹Ве + ¹⁶N

Отримано нові експериментальні дані диференціальних перерізів реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ для основних станів ядер ${}^{9}Be$ і ${}^{16}N$ та збуджених станів ядра ${}^{16}N$ при енергії $E_{\pi a \bar{b}}({}^{11}B) = 45$ МеВ. Експериментальні дані проаналізовано за методом зв'язаних каналів реакції (МЗКР) для одно- і двоступінчастих передач нуклонів і кластерів. У МЗКР-розрахунках для вхідного каналу реакції використано оптичний потенціал, отриманий з аналізу даних пружного розсіяння ядер ${}^{11}B + {}^{14}C$, та спектроскопічні амплітуди нуклонів і кластерів в ядрах, обчислені в рамках оболонкової моделі. Визначено параметри оптичного потенціалу взаємодії ядер ${}^{9}Be + {}^{16}N$ методом підгонки МЗКР-перерізів до експериментальних даних реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$. Визначено внески одно- та двоступінчастих передач нуклонів і кластерів у диференціальні перерізи реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$.

Ключові слова: ядерні реакції, оптична модель, метод зв'язаних каналів реакцій, фолдінг-модель, спектроскопічні амплітуди, оптичні потенціали, механізми реакцій.

Вступ

Вивчення властивостей нестабільних (екзотичних) ядер за допомогою ядерних реакцій з важкими іонами - один з актуальних напрямків досліджень в ядерній фізиці. Ці реакції використовуються для дослідження різноманітних механізмів ядерних процесів, структури утворюваних стабільних і нестабільних ядер та їхню взаємодію. Особливо важливе значення мають вони для дослідження ядро-ядерної взаємодії нестабільних короткоживучих ядер, що неможливо або надзвичайно важко здійснити в безпосередніх (прямих) експериментах з розсіяння іонів цих ядер. До таких ядер належить і ядро ¹⁶N, імовірність утворення та взаємодію якого з ядром ⁹Ве досліджено в цій роботі за допомогою реакції ¹⁴С(¹¹В, ⁹Ве)¹⁶N при енергії $E_{\text{лаб.}}$ (¹¹В) = 45 МеВ.

Диференціальні перерізи цієї реакції вимірювались одночасно з пружним і непружним розсіянням ядер ¹¹B + ¹⁴C [1, 2] та іншими реакціями ¹⁴C(¹¹B, X) з виходом ядер із зарядами Z = 3 - 8. Це забезпечило сприятливу можливість аналізу експериментальних даних реакцій ¹⁴C(¹¹B, X) за методом зв'язаних каналів (МЗКР) із включенням у схему зв'язку каналів пружного й непружного розсіяння іонів ¹¹B ядрами ¹⁴C та з використанням для вхідного каналу реакцій потенціалу взаємодії ядер ¹¹B + ¹⁴C, параметри якого отримано з аналізу пружного розсіяння цих ядер. Використовуючи при цьому в МЗКР-розрахунках спектроскопічні амплітуди нуклонів і кластерів в ядрах, обчислені в рамках оболонкової моделі, була забезпечена можливість визначати параметри оптичних потенціалів взаємодії ядер вихідних каналів реакцій методом підгонки МЗКР-перерізів до експериментальних даних реакцій. Такий метод дослідження ядро-ядерної взаємодії нестабільних ядер набагато легший за проведення безпосередніх експериментів з розсіяння вторинних радіоактивних пучків іонів та є єдиним можливим для незв'язаних і короткоживучих ядер.

Методика експерименту

Вимірювання диференціальних перерізів пружного й непружного розсіяння ядер ¹⁴C + ¹¹В одночасно з реакціями ¹⁴C(¹¹B, X) з виходом ядер із Z = 3 - 8 проводилось на циклотроні C-200Р Лабораторії важких іонів Варшавського університету при енергії $E_{лаб.}(^{11}B) = 45$ МеВ з використанням самопідпримної мішені вуглецю товщиною 280 мкг/см² із 86 %-ним збагаченням ізотопом ¹⁴C. Розкид енергії пучка іонів на мішені не перевищував 0,5 %.

Реєстрація продуктів ядерних процесів проводилась трьома ΔE -E-спектрометрами, у двох з

© С. Ю. Межевич, А. Т. Рудчик, К. Русек, Є. І. Кощий, С. Клічевскі, Г. В. Мохнач, А. А. Рудчик, С. Б. Сакута, Р. Сюдак, Б. Чех, Я. Хоіньскі, А. Щурек, 2013

Рис. 1. Типовий двовимірний спектр $\Delta E(E)$ продуктів ядерних реакцій ¹⁴C(¹¹B, X) при енергії $E_{\pi a \bar{b}}(^{11}B) = 45$ MeB.

яких *ДЕ*-детектором була іонізаційна камера триканальної конструкції [3], а в третьому - кремнієвий детектор товщиною 40 мкм. Робочим газом в іонізаційній камері використовувався протічний аргон при тиску, що забезпечував втрати енергії частинками, еквівалентні втратам у кремнієвому детекторі товщиною 15 мкм. В усіх спектрометрах використовувались кремнієві *Е*-детектори товщиною ~ 1 мм.

Вимірювання проводились з використанням електроніки стандарту САМАС та системи накопичення й спектрометричного аналізу даних SMAN [4] на базі персонального комп'ютера.

Типовий двовимірний $\Delta E(E)$ -спектр продуктів реакцій ¹⁴C(¹¹B, X) показано на рис. 1. Видно, що методика забезпечувала надійну ідентифікацію продуктів реакцій лише за зарядами.

Типові енергетичні спектри ізотопів 'Ве та ¹⁶N, отримані проектуванням відповідних локусів двовимірного спектра на Е-вісь із наступним вилученням неперервного фону від багаточастинкових реакцій, показано на рис. 2 залежно від кінетичної енергії ядер в основному і збуджених станах разом із енергетичною шкалою для різних станів ядер ⁹Ве і ¹⁶N (вертикальні лінії із зазначенням енергії збудження ядер). Енергетична роздільна здатність методики була обумовлена, в основному, розкидом енергії іонів у пучку на мішені (~0,5 %) та неоднорідними втратами ними енергії в мішені. Видно, що роздільна здатність методики забезпечувала надійну ідентифікацію низькоенергетичних дискретних станів ядер із різницею енергій, більшою 0,5 МеВ.

Рис. 2. Типові енергетичні спектри ізотопів ⁹Ве (*a*) та ¹⁶N (δ) із реакцій ¹⁴C(¹¹B, *X*) при енергії $E_{\text{лаб.}}(^{11}\text{B}) = 45 \text{ MeB.}$

Кривими на рис. 2 показано наближення піків симетричними гауссіанами

$$N(E) = \sum_{i} N_{i} \exp\left(-0.5 \frac{(E - E_{i})^{2}}{h_{i}^{2}}\right), \qquad (1)$$

де N_i , E_i і h_i – число відліків у максимумі *i*-піка, положення максимуму та напівширина *i*-піка відповідно. При наближенні спектрів гауссіанами параметри E_i брались рівними кінетичним енергіям ядер ⁹Ве та ¹⁶N в основних та збуджених станах, а параметри напівширин h_i піків – середньому значенню ізольованих піків або природним ширинам рівнів ядер. Параметри N_i визначались підгонкою N(E)-спектрів до відповідних експериментальних спектрів. Параметри h_i для нерозділених в експерименті рівнів ядер та-

Рис. 3. Диференціальні перерізи реакцій ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ при енергії $E_{na6}({}^{11}B) = 45$ МеВ для основних станів ядер ${}^{9}Be$ і ${}^{16}N$ та збуджених станів 0,120 МеВ (0[°]), 0,297 МеВ (3[°]) і 0,397 МеВ (1[°]) ядра ${}^{16}N$ (сумарні перерізи). Криві – МЗКР-розрахунки для основних станів ядер ${}^{9}Be$ і ${}^{16}N$ для одно- й двоступінчастих передач нуклонів і кластерів (пояснення в тексті).

Аналіз експериментальних даних

Методи розрахунків

Експериментальні дані реакції ¹⁴С(¹¹В, ⁹Ве)¹⁶N аналізувались за МЗКР з використанням для вхідного і вихідних каналів реакції ядерних потенціалів типу Вудса - Саксона з об'ємним поглинанням

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_S \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(2)

кож визначались методом підгонки N_i(E)спектрів до експериментальних піків.

Площі гауссіанів використовувались для обчислення диференціальних перерізів ядерних процесів. Коефіцієнти абсолютизації диференціальних перерізів реакції ¹⁴C(¹¹B, ⁹Be)¹⁶N використовувались такі ж самі, як і для пружного та непружного розсіяння ядер ¹⁴C(¹¹B, ¹¹B)¹⁴C [1, 2].

На рис. 2 видно, що нерозділеними в експерименті були такі стани ядра ¹⁶N: 0,0 MeB (2⁻), 0,120 MeB (0⁻), 0,297 MeB (3⁻), 0,397 MeB (1⁻); 3,353 MeB (1⁺), 3,523 MeB (2⁺) та 4,319 MeB (1⁺), 4,390 MeB (1⁻). Для них поміряно сумарні диференціальні перерізи.

Отримані експериментальні диференціальні перерізи реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ при енергії $E_{na6}({}^{11}B) = 45$ МеВ показано на рис. 3 - 5.

Рис. 4. Те ж саме, що на рис. 3, але штрихові криві – МЗКР-перерізи для основних станів ядер ⁹Ве і ¹⁶N (крива <0,0>) та збуджених станів 0,120 МеВ (0[°]), 0,297 МеВ (3[°]) і 0,397 МеВ (1[°]) (криві <0,12>, <0,29> і <0,39> відповідно) ядра ¹⁶N. Крива Σ – некогерентна сума МЗКР-перерізів цих станів ядра ¹⁶N.

та кулонівських потенціалів рівномірно зарядженої кулі

$$V_{C}(r) = \begin{cases} Z_{P}Z_{T}e^{2}(3-r^{2}/R_{C}^{2})/2R_{C}, & r \leq R_{C}, \\ Z_{P}Z_{T}e^{2}/r, & r > R_{C}, \end{cases}$$
(3)

де $R_i = r_i (A_P^{1/3} + A_T^{1/3})$, (i = V, W, C); A_P , Z_P i A_T , Z_T – маси й заряди іонів P та ядер мішені T відповідно. В усіх розрахунках параметр $r_C = 1,25$ фм.

Рис. 5. Диференціальні перерізи реакцій ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ при енергії $E_{\pi a \bar{b}}({}^{11}B) = 45$ МеВ для збуджених станів 3,353 МеВ (1⁺) + 3,523 МеВ (2⁺), 3,960 МеВ (3⁺) та 4,319 МеВ (1⁺) + 4,390 МеВ (1⁻) ядра ${}^{16}N$. Криві – МЗКР-розрахунки (пояснення в тексті).

У МЗКР-розрахунках у схему зв'язку каналів включались пружне й непружне розсіяння ядер ${}^{11}\text{B} + {}^{14}\text{C}$ згідно із схемами переходів, представлених у роботі [2, рис. 4], та реакції одно- й двоступінчастих передач, діаграми яких показано на рис. 6.

Необхідні для МЗКР-розрахунків спектроскопічні амплітуди *S_x* нуклонів і кластерів *x* в ядер-

Рис. 6. Діаграми найпростіших реакцій передач ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ та ${}^{14}C({}^{11}B, {}^{16}N){}^{9}Be$.

них системах A = C + x обчислювались методом Смірнова - Чувільського в рамках трансляційноінваріантної моделі оболонок (ТІМО) [5] за допомогою програми DESNA [6, 7]. Спектроскопічні амплітуди S_x подано в табл. 1.

Хвильові функції відносного руху нуклонів і кластерів x у системах A = C + x обчислювалась стандартним способом підгонки глибини V_0 дійсного (C + x)-потенціалу типу Вудса - Саксона до експериментальних значень енергії зв'язку частинок x в ядрах A. При цьому використовувались параметри $a_V = 0,65 \text{ фм}$ і $r_V = 1,25 \cdot A^{1/3} / (C^{1/3} + x^{1/3}) \text{ фМ}.$

У МЗКР-розрахунках для вхідного каналу реакції ¹⁴C(¹¹B, ⁹Be)¹⁶N використовувались параметри (¹¹B + ¹⁴C)-потенціалу, отримані з аналізу даних пружного й непружного розсіяння іонів ¹¹B ядрами ¹⁴C при енергії $E_{лаб.}$ (¹¹B) = 45 MeB [2], а параметри потенціалу взаємодії ядер вихідного каналу визначались методом підгонки МЗКР-перерізів до експериментальних даних реакції. Параметри потенціалів взаємодії ядер ¹¹B + ¹⁴C і ⁹Be + ¹⁶N подано в табл. 2.

Система ядер	<i>Е</i> _{с.ц.м.} , МеВ	V ₀ , MeB	<i>r_V</i> , фм	<i>а</i> _{<i>V</i>} , фм	W _S , MeB	<i>r_W</i> , фм	<i>а_W</i> , фм	Література
${}^{9}\text{Be} + {}^{16}\text{N}$	19,86	164,5	0,800	0,900	3,0	1,250	0,900	
${}^{9}\text{Be} + {}^{16}\text{N}$	29,02	174,5	0,800	0,900	5,0	1,250	0,900	[12, 13]
${}^{11}B + {}^{14}C$	25,20	266,6	0,750	0,740	7,5	1,345	0,740	[2]
${}^{9}\text{Be} + {}^{16}\text{O}$	19,86	147,0	0,955	0,718	10,7	1,281	0,718	[13]

Таблиця 1. Параметри потенціалів взаємодії ядер

МЗКР-розрахунки проводились за допомогою програми FRESCO [8].

Для взаємодії ядер ⁹Ве + ¹⁶N було обчислено фолдінг-потенціал за моделлю подвійної згортки

$$V_{f}(r) = \int \rho_{P}(r_{P})\rho_{T}(r_{T})\upsilon(|\vec{r}+\vec{r}_{T}-\vec{r}_{P}|)d^{3}r_{P}d^{3}r_{T}, \quad (4)$$

де $\rho_P(r_P)$, $\rho_T(r_T)$ - розподіли густин нуклонів в ядрах ⁹Be (*P*) і ¹⁶N (*T*) відповідно; $\upsilon(|\vec{r} + \vec{r}_T - \vec{r}_P|) = \upsilon(s)$ - нуклон-нуклонний потенціал; \vec{r} - відстань між центрами ядер. У розрахунках потенціалу $V_f(r)$ використовувався потенціал нуклон-нуклонної взаємодії МЗУ Рейда

	1								
A	С	x	nL_J	S_x	A	С	x	nL_J	S_x
⁹ Be	⁷ Li	d	$2S_1$	$-0,226^{(a)}$	^{14}C	^{13}C	n	$1P_{1/2}$	$-1,094^{(a)}$
			$1D_1$	$0,111^{(a)}$	¹⁵ C	^{14}C	n	$2S_{1/2}$	0,707
			$1D_3$	$-0,624^{(a)}$	¹⁵ N	11 B	α	$2D_2$	0,435 ^(a)
⁹ Be	⁸ Be	n	$1P_{3/2}$	0,886	¹⁵ N	^{14}C	р	$1P_{1/2}$	-0,598
¹⁰ Be	⁹ Be	n	$1P_{3/2}$	$1,406^{(a)}$	¹⁶ N	11 B	⁵ He	$3P_{3/2}$	$-0,125^{(a)}$
$^{10}\mathbf{B}$	⁹ Be	р	$1P_{3/2}$	1,185				$2F_{1/2}$	-0,117
$^{11}\mathbf{B}$	⁷ Li	ά	$3S_0$	-0,638				$2F_{5/2}$	0,145
			$2D_2$	-0,422				$2F_{7/2}$	$-0,067^{(a)}$
${}^{11}B$	⁸ Be	t	$2P_{3/2}$	0,641				$1H_{5/2}$	-0,050
11 B	⁹ Be	d	$2S_1$	$-0,607^{(a)}$				$1H_{7/2}$	$-0,080^{(a)}$
			$1D_{1}$	$-0,109^{(a)}$	¹⁶ N	$^{12}\mathbf{B}$	α	$2F_3$	-0,384
			$1D_{3}$	0,610 ^(a)	¹⁶ N	¹³ C	t	$2D_{3/2}$	-0,348
$^{11}\mathbf{B}$	¹⁰ Be	р	$1P_{3/2}$	0,699	¹⁶ N	¹⁴ C	d	$2P_2$	0,380
$^{11}\mathbf{B}$	$^{10}\mathbf{B}$	n	$1P_{3/2}$	$-1,347^{(a)}$	${}^{16}N_{0,120}^{*}$	^{14}C	d	$2P_0$	-0,707
^{12}B	⁹ Be	t	$2P_{1/2}$	$0,102^{(a)}$	¹⁶ N [*] _{0.297}	¹⁴ C	d	$1F_3$	0,110
			$2P_{3/2}$	0,091	${}^{16}N_{0,397}^{*}$	^{14}C	d	$2P_1$	0,110
			$1F_{5/2}$	$0,512^{(a)}$	¹⁶ N [*] _{3,353}	^{14}C	d	$1D_1$	-0,583
^{12}B	$^{11}\mathbf{B}$	n	$1P_{1/2}$	$-0,142^{(a)}$	¹⁶ N [*] _{3.523}	^{14}C	d	$1D_2$	-0,753
			$1P_{3/2}$	-0,127	$^{16}N_{3.960}^{*}$	^{14}C	d	$1D_3$	-0,891
¹³ C	⁹ Be	α	$2D_2$	$0,504^{(a)}$	¹⁶ N [*] _{4,319}	^{14}C	d	$1D_1$	-0,583
¹³ C	^{11}B	d	$2S_1$	-0,263	¹⁶ N [*] _{4,390}	^{14}C	d	$2P_1$	-1,010
			$1D_1$	-0,162	¹⁶ N	¹⁵ C	р	$1P_{3/2}$	0,286
			$1D_{2}$	$-0,485^{(a)}$	¹⁶ N	¹⁵ N	n	$1D_{3/2}$	-0,270
¹⁴ C	⁹ Be	⁵ He	$2S_{3/2}$	$-0,596^{(a)}$	¹⁷ N	^{14}C	t	$3P_{1/2}$	-0,817
			$2D_{3/2}$	$-0,394^{(a)}$	¹⁷ N	¹⁶ N	n	$1D_{3/2}$	$-1,008^{(a)}$
¹⁴ C	¹⁰ Be	α	$3S_0$	-0,566	¹⁸ O	^{14}C	α	$4S_0$	-0,802
^{14}C	^{12}B	d	$1D_1$	-1,010	¹⁸ O	¹⁶ N	d	$2P_2$	0,884

Таблиця 2. Спектроскопічні амплітуди нуклонів і кластерів *x* у системах *A* = *C* + *x*

 $^{(a)}S_{FRESCO} = (-1)^{J_C + j - J_A} S_x = -S_x.$

(Reid). Розподіли нуклонів $\rho_T(r_T)$ і $\rho_P(r_P)$ обчислювались за розподілами зарядів (протонів) в ядрах [9]. Розрахунок фолдінг-потенціалу проводився за допомогою програми DFPOT [10, 11].

Аналіз експериментальних даних реакції ¹⁴C(¹¹B, ⁹Be)¹⁶N

Сумарні диференціальні перерізи реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ при енергії $E_{\pi a 6}({}^{11}B) = 45$ МеВ для основного стану ядра ${}^{9}Be$ та основного (2⁻) і збуджених станів 0,120 МеВ (0⁻), 0,297 МеВ (3⁻) і 0,397 МеВ (1⁻)⁻ядра ${}^{16}N$ показано на рис. 3. Кривими представлено МЗКР-розрахунки для основних станів ядер ${}^{9}Be$ і ${}^{16}N$ для передачі дейтрона (крива <d>), 5 Не-кластера (крива < 5 Не>) та двоступінчастих передач n+p і p+n, α +n і n+ α , n+t і t+n та α +d і d+ α (криві <np>, < α n>, <nt> і α d> відповідно, когерентні суми). Видно, що в цій реакції домінує передача дейтрона. МЗКР-розрахунки підтвердили цей висновок і для збуджених станів ${}^{16}N$.

Когерентні суми МЗКР-перерізів вищевказаних передач нуклонів і кластерів у реакції ¹⁴C(¹¹B, ⁹Be)¹⁶N показано на рис. 4 кривими <0,0>, <0,12>, <0,29> і <0,39> для основного й трьох найнижчих збуджених станів ядра ¹⁶N, а кривою Σ – їхню некогерентну суму. Видно, що ця сума МЗКР-перерізів задовільно описує експериментальні дані. Найбільші МЗКР-перерізи має реакція ¹⁴C(¹¹B, ⁹Be)¹⁶N для основного й першого збудженого стану ядра ¹⁶N.

Диференціальні перерізи реакції ¹⁴ $C(^{11}B, {}^{9}Be)^{16}N$ при енергії $E_{\text{паб}}(^{11}B) = 45$ MeB для збуджених станів $3,353 \text{ MeB}(1^+)$ + +3.523 MeB (2⁺), $3.960 \text{ MeB} (3^+)$ та 4,319 MeB (1⁺) + 4,390 MeB (1⁻) ядра⁻¹⁶N показано на рис. 5. Для нерозділених в експерименті рівнів ядра ¹⁶N на рисунку представлено МЗКРперерізи реакції штриховими кривими, а їхня некогерентна сума - суцільною кривою Σ. Для збудженого рівня 3,960 MeB (3⁺) ядра ¹⁶N M3КРперерізи показано суцільною лінією. Видно, що МЗКР-перерізи, обчислені з урахуванням основних можливих одно- й двоступінчастих передач нуклонів і кластерів при використанні потенціалу взаємодії ядер ⁹Ве + ¹⁶N, параметри якого подано в табл. 1, задовільно описують експериментальні дані реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$.

Потенціал взаємодії ядер ⁹Be + ¹⁶N у порівнянні з іншими ядро-ядерними потенціалами

Потенціал взаємодії ядер ⁹Ве + ¹⁶N було раніше отримано з аналізу експериментальних даних реакції ⁷Li(¹⁸O, ⁹Be)¹⁶N при енергії $E_{c.ц.м.} = 29,02$ MeB [12, 13]. Параметри цього потенціалу при даній енергії подано в табл. 1. У даній роботі цей потенціал визначено при енергії $E_{c.ц.м.} = 19,86$ MeB. З табл. 1 видно, що набори параметрів (⁹Be + ¹⁶N)-потенціалу при цих двох енергіях відрізняються лише глибинами дійсної та уявної частин потенціалу, що можна пояснити їхньою енергетичною залежністю.

Як зазначалось вище, у даній роботі було розраховано фолдінг-потенціал взаємодії ядер ${}^{9}\text{Be} + {}^{16}\text{N}$ за моделлю подвійної згортки, використовуючи формулу (4). На рис. 7 цей потенціал порівнюється з дійсною частиною (${}^{9}\text{Be} + {}^{16}\text{N}$)-потенціалу, отриманою в даній роботі. Видно добру узгодженість радіальних залежностей цих двох потенціалів.

Для дослідження залежності ядро-ядерних потенціалів від структури ядер у даній роботі було

Основні результати та висновки

Отримано нові експериментальні дані реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ при енергії $E_{na6}({}^{11}B) = 45$ MeB для основного стану ядра ${}^{9}Be$ та станів 0,0 MeB (2⁻), 0,120 MeB (0⁻), 0,297 MeB (3⁻), +0,397 MeB (1⁻); 3,353 MeB (1⁺), 3,523 MeB (2⁺); 3,960 MeB (3⁺) та 4,319 MeB (1⁺), 4,390 MeB (1⁻) ядра ${}^{16}N$. Дані проаналізовано за M3KP та досліджено механізми реакції. У схему зв'язку каналів включались пружне й непружне розсіяння ядер ${}^{14}C + {}^{11}B$ на най-простіші одно- й двоступінчасті реакції передач нуклонів і кластерів. У M3KP-розрахунках використовувались спектроскопічні амплітуди нукло-

доцільно порівняти взаємодію ⁹Ве з ядрами ¹⁶N і ¹⁶О, які відрізняються своєю структурою. Потенціал взаємодії ядер ⁹Be + ¹⁶О та енергетичну залежність його параметрів було досліджено в роботі [13] на основі аналізу експериментальних даних пружного розсіяння цих ядер у широкому діапазоні енергій. Параметри (⁹Be + ¹⁶O)-потенціалу при енергії $E_{c.u.m} = 19,86$ MeB, отримані з їхньої енергетичної залежності, подано в табл. 1. Порівняння радіальних залежностей (⁹Be + ¹⁶N)- і $(^{9}$ Be + 16 O)-потенціалів показано на рис. 8. Видно, що периферійна область (${}^{9}\text{Be} + {}^{16}\text{N}$)-потенціалу трохи ширша, ніж у (${}^{9}\text{Be} + {}^{16}\text{O}$)-потенціалу, що можна пояснити відмінністю оболонкових структур ядер ¹⁶N і ¹⁶О: в ядрі ¹⁶О повністю заповнені нейтронна й протонна 1р-оболонки, а ядро ¹⁶N має одне дефіцитне протонне 1p_{1/2}-місце та зовнішній нейтрон у (2s-1d)-оболонці. Іншими словами, структура ¹⁶О характеризується схемою Юнга [4444], а ядра ¹⁶N – схемою [44431]. На рис. 8 також видно, що ці два потенціали дуже відрізняються своїми уявними частинами.

Рис. 8. Порівняння потенціалів взаємодії ядер ${}^{9}\text{Be} + {}^{16}\text{N}$ і ${}^{9}\text{Be} + {}^{16}\text{O}$.

нів і кластерів в ядрах, обчислені в рамках оболонкової моделі методом Смірнова - Чувільського. Установлено, що внески двоступінчатих реакцій передач у МЗКР-перерізи та передача ⁵Некластера не відіграють суттєвої ролі. У цій реакції домінує прямий процес передачі дейтрона.

За даними реакції ${}^{14}C({}^{11}B, {}^{9}Be){}^{16}N$ визначено параметри потенціалу взаємодії ядер ${}^{9}Be + {}^{16}N$. Проведено порівняння цього потенціалу з відповідним фолдінг-потенціалом, обчисленим за моделлю подвійної згортки, та (${}^{9}Be + {}^{16}O$)-потенціалом. Установлено, що дійсна частина (${}^{9}Be + {}^{16}N$)-потенціалу добре узгоджується з фолдінг-потенціалом і значно відрізняється своєю уявною частиною від (${}^{9}Be + {}^{16}O$)-потенціалу.

СПИСОК ЛІТЕРАТУРИ

- Mezhevych S.Yu., Rudchik A.T., Rusek K. et al. Excitation of ¹⁴C by 45 MeV ¹¹B ions // Nucl. Phys. A. -2005. - Vol. 753. - P. 13 - 28.
- Межевич С.Ю., Рудчик А.Т., Русек К. та ін. Пружне та непружне розсіяння іонів ¹¹В ядрами ¹⁴С при енергії 45 МеВ // Ядерна фізика та енергетика. 2012. Т. 13. С. 123 131.
- Чернієвський В. К, Русек К., Будзановскі А. та ін. Експериментальна установка для дослідження ядерних реакцій на Варшавському циклотроні U-200P // Зб. наук. праць Ін-ту ядерних досл. -2002. - № 2 (8). - С. 216 - 224.
- 4. *Kowalczyk M.* SMAN: A Code for Nuclear Experiments, Warsaw University report (1998).
- Smirnov Yu. F., Tchuvil'sky Yu. M. Cluster spectroscopic factors for the p-shell nuclei // Phys. Rev. C. -1977. - Vol. 15, No. 1. - P. 84 - 93.
- Рудчик А.Т., Чувильский Ю.М. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). - Киев, 1982. - 27 с. - (Препр. АН УССР. Ин-т ядерных исслед.; КИЯИ-82-12).
- 7. Рудчик А.Т., Чувильский Ю.М. Спектроскопические амплитуды многонуклонных кластеров в ядрах

1р-оболочки и анализ реакций многонуклонных передач // УФЖ. - 1985. - Т. 30, № 6. - С. 819 - 825.

- Thompson I. J. Coupled reaction channels calculations in nuclear physics // Comp. Phys. Rep. - 1988. -Vol. 7. - P. 167 - 212.
- 9. *De Vries H., De Jager C.W., De Vries C.* Nuclear charge-density-distribution parameters from elastic electron scattering // Atomic data and nuclear data tables. 1987. Vol. 36. P. 495 536.
- 10. Cook J. DFPOT a program for the calculation of double folded potentials // Comp. Phys. Com. 1982.
 Vol. 25, Iss. 2. P. 125 139.
- Cook J. DFPOT a program for the calculation of double folded potentials // Ibid. - 1984. - Vol. 35. -P. 775.
- 12. Рудчик А.Т., Степаненко Ю.М., Рудчик А.А. та ін. Механізми реакції ⁷Li(¹⁸O, ¹⁶N)⁹Ве та потенціал взаємодії ядер ⁹Ве + ¹⁶N // Ядерна фізика та енергетика. - 2011. - Т. 12. - С. 27 - 34.
- Rudchik A. T., Stepanenko Yu.M., Kemper K.W. et al. The ⁷Li(¹⁸O,¹⁶N)⁹Be reaction and optical potential of ¹⁶N + ⁹Be versus ¹⁶O + ⁹Be // Nucl. Phys. A. - 2011. -Vol. 860. - P. 8 - 21.

С. Ю. Межевич, А. Т. Рудчик, К. Русек, Е. И. Кощий, С. Кличевски, А. В. Мохнач, А. А. Рудчик, С. Б. Сакута, Р. Сюдак, Б. Чех, Я. Хоиньски, А. Щурек

МЕХАНИЗМЫ РЕАКЦИИ ¹⁴С(¹¹В, ⁹Ве)¹⁶N И ПОТЕНЦИАЛ ВЗАИМОДЕЙСТВИЯ ЯДЕР ⁹Ве + ¹⁶N

Получены новые экспериментальные данные дифференциальных сечений реакции ¹⁴C(¹¹B, ⁹Be)¹⁶N для основных состояний ядер ⁹Be и ¹⁶N и возбужденных состояний ядра ¹⁶N при энергии $E_{na6.}$ (¹¹B) = 45 MeB. Экспериментальные данные реакции проанализированы по методу связанных каналов реакций (MCKP) для одно- и двухступенчатых передач нуклонов и кластеров. В MCKP-расчетах для входного канала реакции использованы оптический потенциал, полученный из анализа данных упругого рассеяния ядер ¹¹B + ¹⁴C, и спектроскопические амплитуды нуклонов и кластеров в ядрах, рассчитанные в рамках оболочечной модели. Определены параметры оптического потенциала взаимодействия ядер ⁹Be + ¹⁶N методом подгонки MCKP-сечений к экспериментальным данным реакции ¹⁴C(¹¹B, ⁹Be)¹⁶N. Определены вклады одно- и двухступенчатых передач нуклонов и кластеров в дифференциальные сечения реакции ¹⁴C(¹¹B, ⁹Be)¹⁶N.

Ключевые слова: ядерные реакции, оптическая модель, метод связанных каналов реакций, фолдинг-модель, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.

S. Yu. Mezhevych, A. T. Rudchik, K. Rusek, E. I. Koshchy, S. Kliczewski, A. V. Mokhnach, A. A. Rudchik, S. B. Sakuta, R. Siudak, B. Czech, J. Choiński, A. Szczurek

¹⁴C(¹¹B, ⁹Be)¹⁶N REACTION MECHANISMS AND POTENTIAL OF THE ⁹Be + ¹⁶N INTERACTION

New experimental data for differential cross sections of the ¹⁴C(¹¹B, ⁹Be)¹⁶N reaction were measured for the ground states of ⁹Be and ¹⁶N nuclei as well as for the excited states of ¹⁶N at the energy E_{lab} (¹¹B) = 45 MeV. The reaction data were analyzed within the coupled-reaction channels method (CRC) for one- and two-step transfers of nucleons and clusters. In the CRC-calculations, the optical potential deduced from the analysis of the ¹¹B + ¹⁴C elastic scattering data was used for the entrance reaction channel. Needed spectroscopic amplitudes of nucleons and clusters in nuclei were calculated within shell-model. ⁹Be + ¹⁶N optical potential parameters were deduced by fitting CRC cross-sections to the ¹⁴C(¹¹B, ⁹Be)¹⁶N reaction data. Contributions of one- and two-step transfers of nucleons and clusters into the ¹⁴C(¹¹B, ⁹Be)¹⁶N reaction cross-sections were obtained.

Keywords: nuclear reactions, optical model, coupled-reaction-channels method, folding-model, spectroscopic amplitudes, optical potentials, reaction mechanisms.

Надійшла 08.01.2013 Received 08.01.2013