УДК 539.171.017

= ЯДЕРНА ФІЗИКА =

В. И. Ковальчук

Киевский национальный университет имени Тараса Шевченко, Киев

НЕУПРУГОЕ ДИФРАКЦИОННОЕ РАССЕЯНИЕ ЯДЕР ⁶Li ЯДРАМИ ¹²C, ²⁸Si

Предложен метод расчета дифференциальных сечений неупругого дифракционного рассеяния кластерных ядер четно-четными ядрами с возбуждением низколежащих коллективных состояний мишеней. Метод удовлетворительно описывает наблюдаемые угловые распределения сечений неупругого рассеяния ядер ⁶Li ядрами ¹²C, ²⁸Si с возбуждением уровней 2⁺ (4,44 и 1,78 МэВ соответственно).

Ключевые слова: ядерная дифракция, кластерные ядра, неупругое рассеяние, низколежащие коллективные состояния.

Введение

Основы теории дифракционного неупругого рассеяния (НУР) нуклонов на ядрах с возбуждением коллективных состояний ядер были заложены в работах Инопина [1, 2] и Блэра [3, 4]. В адиабатическом приближении амплитуда НУР с возбуждением низколежащих колебательных состояний четно-четных ядер $|IM\rangle$, имеющих в основном состоянии спин и его проекцию $|00\rangle$, определяется выражением

$$f_{IM}(q) = \left\langle IM \left| f(q, \{\alpha_{\lambda\mu}\}) \right| 00 \right\rangle, \qquad (1)$$

где $f(q, \{\alpha_{\lambda\mu}\})$ – амплитуда упругого рассеяния (УР) нуклона на деформированном ядре с фиксированными значениями коллективных переменных $\alpha_{\lambda\mu}$, которые характеризуют форму деформированного ядра

$$R(\theta, \phi) = R_0 + \Delta R(\theta, \phi) ,$$

$$\Delta R(\theta, \phi) = R_0 \sum_{\lambda \mu} \alpha_{\lambda \mu} Y_{\lambda \mu}(\theta, \phi) . \qquad (2)$$

Здесь $q = 2k \sin(\vartheta/2)$ – переданный импульс (k – относительный импульс нуклона, ϑ – угол рассеяния), R_0 – радиус равновеликой сферы.

В простейшем случае рассеяния частицы черным бездиффузным ядром с деформацией (2) амплитуда НУР имеет вид [5]

$$f(q) = \sum_{\lambda\mu} \alpha_{\lambda\mu} f_{\lambda\mu}(q), \qquad (3)$$

$$f_{\lambda\mu}(q) = i^{(1-\mu)} k R_0^2 Y_{\lambda\mu}(\pi/2, 0) J_{\mu}(qR_0) \exp[2i\eta(R_0)],$$
(4)

где $\eta(R_0)$ – кулоновская фаза. Использование выражений (3) и (4) при анализе наблюдаемых

сечений дает возможность определить, например, дифракционный радиус [6, 7], однако сам эксперимент описывается лишь качественно: рассчитанные значения сечений оказываются завышенными, дифракционные минимумы не заполняются. Формула (4) не учитывает структуру падающей частицы и ядерно-оптические свойства мишени. Кроме того, формула (4) получена в линейном приближении по ΔR .

К настоящему времени накоплен ряд экспериментальных данных по НУР ядер ⁶Li четночетными ядрами ¹²C, ²⁴Mg, ²⁸Si, ^{40,48}Ca, ⁵⁸Ni, ⁹⁰Zr, ¹¹⁶Sn при дифракционных энергиях с возбуждением коллективных состояний мишеней [8 - 11]. Как правило, для описания экспериментов по ядроядерному НУР привлекается модель двойного фолдинга и метод связанных каналов. Однако существующий формализм дифракционной модели [5] также может быть использован в подобной задаче после некоторой его модификации.

Формализм

Во многих задачах рассеяния ядро ⁶Li рассматривается как состоящее из двух кластеров – α -частицы и дейтрона. Такое приближение оправдано, поскольку ядро считается достаточно хорошо кластеризованным, если квадрат отношения радиуса более крупного кластера к радиусу всего ядра $x \le 0.5$ [12] – для ядра ⁶Li $x \cong 0.37$ [13]. Амплитуда дифракционного рассеяния двухкластерного ядра имеет вид [5]

$$F(q) = \frac{k}{k_1} f_1(q) \Phi(b_2 q) + \frac{k}{k_2} f_2(q) \Phi(b_1 q) + \frac{ik}{2\pi k_1 k_2} \int d^{(2)} \vec{g} \Phi(g) f_1(|b_1 \vec{q} - \vec{g}|) f_2(|b_2 \vec{q} + \vec{g}|),$$
(5)

где $k(k_j)$ – относительный импульс падающего ядра (*j*-го кластера, j = 1, 2); $\Phi(x)$ – его форм-

© В. И. Ковальчук, 2014

фактор; $b_j = m_j / (m_1 + m_2)$, m_j – массы кластеров. Для определенности везде ниже будем считать а-частицу 1-м кластером, дейтрон – 2-м. Функции $f_j(q)$ в выражении (5) являются кластерядерными амплитудами рассеяния

$$f_j(q) = \frac{ik_j}{2\pi} \int d^{(2)} \vec{\rho}_j \exp[i\vec{q}\vec{\rho}_j] \omega_j(\rho_j) \exp[2i\eta_j(\rho_j)],$$
(6)

где k_j – импульс *j*-го кластера; $\vec{\rho}_j$ – двумерный вектор параметра удара, перпендикулярный к \vec{k} ; $\omega_j(\rho_j)$ – кластер-ядерная функция профиля; $\eta_i(\rho_i)$ – кулоновская фаза.

Предположим, что мишень деформирована так, что область тени на плоскости, в которой лежит $\vec{\rho}_i$, ограничена кривой

$$R_{j}(\boldsymbol{\varphi}) = R_{0j} + \Delta R_{j}(\boldsymbol{\varphi}),$$
$$\Delta R_{j}(\boldsymbol{\varphi}) = R_{0j} \sum_{\lambda \mu} \alpha_{\lambda \mu} Y_{\lambda \mu}(\pi/2, \boldsymbol{\varphi}), \qquad (7)$$

где $R_{0,i} = r_0 \left(A_i^{1/3} + A^{1/3} \right)$ – радиус кластер-ядерного взаимодействия (A_i , A – массовые числа *j*-го кластера и мишени соответственно). Интеграл по *d* ρ_i в формуле (6) фактически является суммой трех интегралов на интервалах: 2) $\left[R_{0_i}, R_{0_i} + \Delta R_i(\varphi) \right]$ 1) $|0, R_{0i}|,$ И 3) $\left\lceil R_{0,i} + \Delta R_{i}(\phi), \infty \right)$. Последний из этих интегралов представляет собой кулоновскую амплитуду рассеяния. В [14 - 16] было показано, что величины кулоновских сечений не зависят от тонкой структуры распределения заряда в ядре; иначе говоря, В силу того, что $\max_{0 \le \varphi \le 2\pi} |\Delta R_j(\phi) / R_{0j}| << 1$, третий интеграл можно заменить на интеграл на интервале $\left\lceil R_{0i}, \infty \right\rangle$. Сумма такого интеграла вместе с первым интегралом даст просто амплитуду УР, которая учитывает как ядерное, так и кулоновское взаимодействие. Оставшийся интеграл будет описывать амплитуду НУР *j*-го кластера с возбуждением колебательного состояния мишени $|\lambda\mu\rangle$

$$f_{j}(q) = \frac{ik_{j}}{2\pi} \int_{R_{0j}}^{R_{0j}+\Delta R_{j}(\varphi)} d^{(2)} \vec{\rho}_{j} \exp[i\vec{q}\vec{\rho}_{j}] \omega_{j}(\rho_{j}) \exp[2i\eta_{j}(\rho_{j})].$$
(8)

Заметим, что если в формуле (8) выбрать $\omega_j(\rho_j) = \Theta(\rho_j)$ (функция Хевисайда), то интеграл по $d\rho_j$ можно взять по частям. Пренебрегая слагаемым, пропорциональным $(\Delta R_j(\varphi) / R_{0j})^2$, и интегрируя далее по $d\varphi$, получим выражение, совпадающее с формулой (4).

В качестве кластер-ядерной функции профиля выберем фермиевскую зависимость

$$\omega_{j}(\rho_{j}) = \omega_{0j} \left[1 + \exp\{(\rho_{j} - R_{0j})/\Delta\} \right]^{-1}, \quad (9)$$

где ω_{0j} – параметр поглощения; Δ – диффузность поверхности мишени. Кулоновский множитель можно вынести из-под знака интеграла в

формуле (8), так как фаза $\eta_j (R_{0j} + \Delta R_j) \cong$ $\cong \eta_j (R_{0j})$. Выполняя в (8) замену переменной интегрирования $\rho_j \rightarrow \xi R_{0j}$ и учитывая формулу (7), получим

$$f_j(q) = f_j(q; \lambda, \mu) =$$
$$= \omega_{0j} R_{0j}^2 \exp[2i\eta_j(R_{0j})] u_j(q; \lambda, \mu), \qquad (10)$$

где

$$u_{j}(q;\lambda,\mu) = \frac{ik_{j}}{2\pi} \int_{0}^{2\pi} d\phi \int_{1}^{Z_{\lambda\mu}(\phi)} d\xi \frac{\xi \exp[i\xi q R_{0j}\cos\phi]}{1 + \exp[(\xi - 1)R_{0j}/\Delta]}$$
(11)

$$Z_{\lambda\mu}(\varphi) = \left(1 + \delta_{\lambda\mu}^2 + 2\delta_{\lambda\mu}\cos(\mu\varphi)\right)^{1/2}, \qquad (12)$$

$$\delta_{\lambda\mu} = \frac{\beta_{\lambda}}{\sqrt{2\lambda+1}} \begin{cases} i^{\lambda+\mu} \sqrt{\frac{2\lambda+1}{4\pi}} \frac{\sqrt{(\lambda-\mu)!(\lambda+\mu)!}}{(\lambda-\mu)!!(\lambda+\mu)!!}, & (\lambda+\mu)-\text{четные;} \\ 0, & (\lambda+\mu)-\text{четные.} \end{cases}$$
(13)

где β_{λ} – параметр деформации мишени [5].

Результаты расчетов и их обсуждение. Выводы

Формулы (8) - (13) непосредственно использовались в расчетах дифференциальных сечений НУР ядра ⁶Li ядрами ¹²C, ²⁸Si с возбуждением коллективных состояний мишеней ¹²C^{*}(2⁺; 4,44 МэВ) и ²⁸Si^{*}(2⁺; 1,78 МэВ):

$$\sigma(\vartheta) = \sum_{M=-I}^{I} \left| F_{IM}(q) \right|^2, \ I = 2, \qquad (14)$$

где $F_{IM}(q)$ – амплитуда (5), в которой выполнена замена $f_j(q)$ на кластер-ядерные амплитуды (10): $f_j(q) \rightarrow f_j(q; \lambda = I, \mu = M)$.

В расчетах использовался формфактор основного состояния ядра ⁶Li [17], входящий в формулу (5). В результате исследования влияния величин параметров ω_{0j} , Δ и β_2 на поведение зависимостей $\sigma(\vartheta)$ было установлено следующее:

1. Модель сильного поглощения с бездиффузной поверхностью ($\omega_{01} = \omega_{02} = 1$, $\Delta \to 0$) неудовлетворительно описывают эксперименты: в дифракционной картине присутствуют глубокие минимумы, а в области дифракционных максимумов величины рассчитанных сечений в несколько раз превышают соответствующие экспериментальные.

2. Значение параметра диффузности в пределах $0.3 < \Delta < 1$ слабо влияет как на заполняемость дифракционных минимумов, так и на величины $\sigma(\vartheta)$ в области $0^{\circ} \le \vartheta \le 60^{\circ}$, поэтому Δ в расчетах были зафиксированы: $\Delta = 0.49$ фм (12 C), $\Delta = 0.56$ фм (28 Si) [18].

3. Величина параметра деформации β_2 влияет на положение кривой $\sigma(\vartheta)$ относительно вертикальной оси, а также на характер осцилляций сечения. При $\beta_2 \rightarrow 0$ дифракционная картина смещается вниз, в ней возникают глубокие минимумы. С увеличением значения β_2 кривая $\sigma(\vartheta)$ смещается вверх, при этом возникает некоторая область углов, в которой осцилляции сечений исчезают. При дальнейшем увеличении $\beta_2 \rightarrow 1$ в угловой зависимости $\sigma(\vartheta)$ вновь возникают глубокие дифракционные минимумы.

На рис. 1 и 2 представлены результаты расчетов сечений (14) ядер ⁶Li с возбуждением уровня 2^+ мишеней ¹²С и ²⁸Si (сплошные кривые).

Штрихпунктирные линии на этих рисунках взяты из тех же работ, в которых были опубли-кованы результаты соответствующих экспериментов: эти сечения рассчитывались в рамках

Рис. 1. Дифференциальные сечения НУР ядер ⁶Li ядрами ¹²С с возбуждением уровня 2⁺ при энергиях падающего ядра 123,5 МэВ (*a*), 168,6 МэВ (*б*) и 210 МэВ (*в*). Экспериментальные данные взяты из работ [8] (*a*, *б*) и [11] (*в*). Объяснение кривых дано в тексте.

Рис. 2. То же, что и на рис. 1, но для мишени ²⁸Si при энергиях падающего ядра 210 МэВ (*a*) и 240 МэВ (δ). Экспериментальные данные взяты из работ [11] (*a*) и [9] (δ).

метода связанных каналов с использованием либо ядро-ядерных потенциалов двойного фолдинга [8, 11], либо параметры оптического потенциала изначально рассматривались как подгоночные [9].

В таблице приведены значения параметров дифракционной модели, полученные в результате χ^2 -подгонки сечений (14) к экспериментам.

Величины параметров, использованные в расчетах сечений, приведенных на рис. 1 и 2

Мишень	Энергия ⁶ Li, МэВ	<i>r</i> ₀ , фм	ω ₀₁	ω ₀₂	β_2	β ₂ [19]
^{12}C	123,5	1,65	0,48	0,37	0,53	0,582
¹² C	168,6	1,49	0,60	0,17	0,53	
¹² C	210	1,47	0,57	0,26	0,50	
²⁸ Si	210	1,50	0,45	0,69	0,42	0,407
²⁸ Si	240	1,48	0,40	0,49	0,41	

Характерной особенностью всех рассчитанных кривых является постепенное уменьшение амплитуды осцилляций, вплоть до почти полного ее затухания, с увеличением величины угла рассеяния. В области значений $\vartheta \cong 50 \div 60^{\circ}$ осцил-

- 1. Инопин Е.В. Возбуждение колебательных уровней 10. Krishichayan, Chen X., Lui Y.-W. et al. Elastic and inядер при рассеянии быстрых нейтронов // ЖЭТФ. -1956. - Т. 31, вып. 5. - С. 901 - 902.
- 2. Инопин Е.В. Неупругое дифракционное рассеяние // Там же. - 1966. - Т. 50, вып. 6. - С. 1592 - 1602.
- 3. Blair J.S. Inelastic diffraction scattering // Phys. Rev. -1959. - Vol. 115, No. 4. - P. 928 - 938.
- 4. Блэр Д.С. Возбуждение коллективных состояний при неупругом рассеянии // Прямые процессы в ядерных реакциях / Под ред. А.А. Оглоблина. М.: Атомиздат, 1965. - С. 208 - 222.
- 5. Ситенко А.Г. Теория ядерных реакций. М.: Энергоатомиздат, 1983. - С. 197 - 198.
- 6. Ogloblin A.A., Belyaeva T.L., Demyanova A.S. et al. Determination of nuclear radii for unstable states in ¹²C with diffraction inelastic scattering // Phys. Rev. C. - 2009. - Vol. 80, No. 5. - P. 054603(9).
- 7. Ogloblin A.A., Belyaeva T.L., Danilov A.N. et al. Radius of ${}^{12}C$ in the excited 2^+_2 Hoyle state // Eur. Phys. J. A. - 2013. - Vol. 49, No. 4. - P. 46(7).
- 8. Katori K., Shimoda T., Fukuda T. et al. Breakup effects of ^{6,7}Li on elastic and inelastic scattering from ¹²C at 18 - 28 MeV/nucleon // Nucl. Phys. A. - 1988. -Vol. 480, No. 2. - P. 323 - 341.
- 9. Chen X., Liu Y.-W., Clark H.L. et al. Folding model analysis of 240 MeV ⁶Li elastic scattering on ¹¹⁶Sn and inelastic scattering to low-lying states of ¹¹⁶Sn // Phys. Rev. C. - 2007. - Vol. 76, No. 5. - P. 054606(7); Giant resonances in ¹¹⁶Sn from 240 MeV ⁶Li scattering // Ibid. - 2009. - Vol. 79, No. 2. - P. 024320(8); Giant resonanses in ²⁴Mg and ²⁸Si from 240 MeV ⁶Li scattering // Ibid. - 2009. - Vol. 80, No. 1. -P. 014312(16).

ляции сечений возникают вновь (на выходе из области дифракционного приближения).

Таким образом, из сравнения результатов расчетов с экспериментальными данными (см. рис. 1 и 2) следует, что предложенный в работе метод удовлетворительно описывает наблюдаемые угловые зависимости сечений НУР в области 1-го и 2-го дифракционных максимумов, а также в диапазоне углов рассеяния $30 \div 50^{\circ}$ для ¹²С и $20 \div 40^{\circ}$ – для ²⁸Si. Не описаны 3-й (еле сформировавшийся) дифракционный максимум для ¹²С и 3-й, 4-й – для ²⁸Si. Согласие с экспериментами в указанных областях, на наш взгляд, можно было бы улучшить, если в формуле (9) ввести рефракцию $\omega_{0i} = \operatorname{Re} \omega_{0i} + i \operatorname{Im} \omega_{0i}$, а также отдельный параметр диффузности для каждого из кластеров. Такая более сложная модель была бы аналогом хорошо известной шестипараметрической оптической модели.

СПИСОК ЛИТЕРАТУРЫ

- elastic scattering of 240-MeV ⁶Li ions from ⁴⁰Ca and ⁴⁸Ca and tests of a systematic optical potential // Phys. Rev. C. - 2010. - Vol. 81, No. 4. - P. 044612(10).
- 11. Nadasen A., McMaster M., Fingal M. et al. Inelastic scattering of 210 MeV ⁶Li ions from ¹²C, ²⁸Si and ⁵⁸Ni: Test of unique ⁶Li potentials // Phys. Rev. C. -1989. - Vol. 40, No. 3. - P. 1237 - 1243.
- 12. Неудачин В.Г., Смирнов Ю.Ф. Нуклонные ассоциации в легких ядрах. - М.: Наука, 1969. - 414 с.
- 13. Egelhof P., Alkhazov G.D., Andronenko M.N. et al. Nuclear-matter distributions of halo nuclei from elastic proton scattering in inverse kinematics // Eur. Phys. J. A. - 2002. - Vol. 15. - P. 27 - 33.
- 14. Woods R.D., Saxon D.S. Diffuse Surface Optical Model for Nucleon-Nuclei Scattering // Phys. Rev. -1954. - Vol. 95. - P. 577 - 578.
- 15. Ходгсон П.Е. Оптическая модель упругого рассеяния. - М.: Атомиздат, 1966. - с. 42.
- 16. Тартаковський В.К., Ковальчук В.І., Фурсаєв О.В. Про вплив кулонівської взаємодії та дифузності ядерної поверхні на дифракційне пружне розсіяння дейтронів ядрами // УФЖ. - 2001. - Т. 46, № 4. -C. 409 - 414.
- 17. Wiringa R.B., Schiavilla R. Microscopic Calculation of ⁶Li Elastic and Transition Form Factors // Phys. Rev. Lett. - 1998. - Vol. 81, No. 20. - P. 4317 - 4320.
- 18. De Vries H., De Jager C.W., De Vries C. Nuclear charge-density-distribution parameters from elastic electron scattering // At. Data Nucl. Data Tabl. - 1987. - Vol. 36, No. 3. - P. 495 - 536.
- Raman S., Nestor C. W., jr., Tikkanen P. Transition 19. probability from the ground to the first-excited 2^+ state of even-even nuclides // At. Data Nucl. Data Tabl. -2001. - Vol. 78, No. 1. - P. 1 - 128.

В. І. Ковальчук

НЕПРУЖНЕ ДИФРАКЦІЙНЕ РОЗСІЯННЯ ЯДЕР ⁶Li ЯДРАМИ ¹²C, ²⁸Si

Запропоновано метод обчислення диференціальних перерізів непружного дифракційного розсіяння кластерних ядер парно-парними ядрами зі збудженням низьколежачих колективних станів мішеней. Метод задовільно описує експериментальні кутові розподіли перерізів непружного розсіяння ядер ⁶Li ядрами ¹²C, ²⁸Si зі збудженням рівнів 2⁺ (4,44 і 1,78 МеВ відповідно).

Ключові слова: ядерна дифракція, кластерні ядра, непружне розсіяння, низьколежачі колективні стани.

V. I. Kovalchuk

DIFFRACTIVE INELASTIC SCATTERING OF ⁶Li NUCLEI BY ¹²C, ²⁸Si NUCLEI

Method of differential cross sections calculation has been proposed for inelastic diffractive scattering of clustered nuclei by even-even nuclei with excitation of low-lying collective states. The method satisfactorily describes the experimental angular distributions of inelastic scattering cross sections of ⁶Li nuclei by ¹²C and ²⁸Si nuclei with the excitation of 2^+ states (4,44 and 1,78 MeV, respectively).

Keywords: nuclear diffraction, clustered nuclei, inelastic scattering, low-lying collective states.

Надійшла 28.10.2013 Received 28.10.2013