УДК 539.142

= ЯДЕРНА ФІЗИКА =

И. Н. Вишневский, В. А. Желтоножский, А. Н. Саврасов, Е. П. Ровенских

Институт ядерных исследований НАН Украины, Киев

ИССЛЕДОВАНИЕ ФРАГМЕНТОВ ФОТОДЕЛЕНИЯ ²³³U И ²⁴¹Am

Измерены изомерные отношения выходов ядер ⁹⁰Rb, ¹³³Te, ¹³⁴I и ¹³⁵Xe, образованных в результате фотоделения ²³³U тормозными γ-квантами с граничной энергией 10,5 и 17 МэВ и ²⁴¹Am γ-квантами с граничной энергией 9,8 МэВ. Изомерные отношения вычислялись с учетом вклада от распада изобарных ядер в выходы исследуемых изотопов. Определены средние угловые моменты исследуемых фрагментов деления в рамках статистической модели распада.

Ключевые слова: фотоделение, изомерные отношения выходов, активационная методика, расчеты в TALYS.

Введение

Известно, что при низкоэнергетическом и спонтанном делении осколки, которые создаются, имеют угловые моменты, величины которых значительно превышают угловой момент делящегося ядра. В рамках жидкокапельной модели деления создание больших угловых моментов объясняется возбуждением мод, таких как «изгиб» и «кручение», во время спуска ядра из седловой точки к точке разрыва. К тому же некоторый дополнительный угловой момент может возникать за счет кулоновского отталкивания фрагментов сразу после деления.

Поэтому исследование продуктов деления может предоставить полезную информацию о конфигурации ядерной системы возле точки разрыва и привести к лучшему пониманию процессов деления. Среди серии методов, изучающих фрагменты деления можно выделить следующие: исследование угловых зависимостей у-квантов относительно выделенных направлений; изучение угловых распределений фрагментов деления; исследование множественности у-квантов; использование информации об относительном заселении уровней ротационной полосы; использование изомерных отношений для исследования как угловых моментов высоковозбужденных состояний, так и для изучения структуры ядра и характеристик уровней в широком диапазоне энергий возбуждения.

Данные о средних угловых моментах осколков деления представляют большой научный интерес, так как до сих пор отсутствует ясное понимание одновременного существования двух каналов деления: ассиметричного и симметричного. Для создания теоретических моделей необходима экспериментальная информация о динамике деления. Одним из параметров, характеризующих эту динамику, являются средние угловые моменты продуктов деления. Из этих данных извлекается информация о свойствах делящихся ядер при переходе от седловой точки до точки разрыва.

Метод изомерных отношений – наиболее распространенный метод получения информации о средних угловых моментах фрагментов деления. Он базируется на измерении изомерных отношений σ_h/σ_l , где σ_h , σ_l – сечения образования высоко- и низкоспиновых состояний одного и того же фрагмента деления. Такие состояния образуются, например, в ядрах, близких к магическим с $A \sim 90, Z \sim 40, N \sim 50$ и $A \sim 132, Z \sim 50, N \sim 82$. В этих ядрах образуются изомерные и основные состояния за счет подоболочек, различающихся значительно по квантовым числам ($p_{1/2}$; $g_{9/2}$) – для $Z, N \sim 50$; $s_{1/2}$; $d_{3/2}$; $h_{11/2}$ – вблизи N = 82.

Следует отметить, что основная информация о величинах σ_h/σ_l получена в (n, *f*)-делении [1]. Что касается фотоделения, то, например, изучались изомерные отношения выходов и средние угловые моменты \overline{J} осколков для ²³²Th, ^{235,238}U [2 - 9]. С трансурановых нуклидов данным методом исследовалось фотоделение ²³⁷Np, ²³⁹Pu и ²⁴¹Am [10 - 12]. Фотоделение ²⁴¹Am проводилось γ -квантами тормозного спектра электронов с граничной энергией $E_{rp} = 17$ МэВ.

В то же время изучение низкоэнергетического фотоделения тяжелых ядер имеет следующие преимущества перед делением другими частицами: взаимодействие γ -квантов с веществом полностью электромагнитное и в ядро вносится угловой момент 1 \hbar . Исходя из вышеизложенного, целью данной работы было исследование изомерных отношений и средних угловых моментов при фотоделении ядер²³³U для реакций (γ , f) + (γ , nf), ²⁴¹Am в области ниже порога реакции (γ , nf) и анализ влияния изменения числа нейтронов в делящихся системах.

Методика и экспериментальные результаты

В исследованиях использовалась активационная методика, детали которой можно найти в

© И. Н. Вишневский, В. А. Желтоножский, А. Н. Саврасов, Е. П. Ровенских, 2014

работах [11, 13]. Для измерений использовались мишени из урана и америция, обогащенные ²⁴¹Ат и ²³³U. Облучение мишени с ²³³U проводилось у-квантами тормозного спектра электронов микротрона М-30 с энергией 17 и 10,5 МэВ, а мишени с ²⁴¹Ат – тормозными у-квантами от электронов с энергией 9,8 МэВ. Граничные энергии тормозных у-квантов 9,8 и 10,5 МэВ выбраны с целью исключения как (ү, nf)-канала, который открывается при $E_{\rm rp} > 11$ МэВ, так и (ү, п)реакции на материалах контейнеров, в которых находились облучаемые изотопы. Облучение проводилось в течение 5 - 10 мин и через 15 -20 с начинались измерения на Ge-спектрометрах. Через каждые 60 с спектры записывались в течение всего времени измерения (как правило, оно составляло 5 - 6 ч).

В экспериментах использовались спектрометры на базе Ge-детекторов с разрешением 1,8 кэВ для γ-линии 1332 кэВ ⁶⁰Со. Для обработки спектров применялся пакет программ Winspectrum [14]. При описании серии γ-пиков, которые накладывались между собой, их площади определялись путем вписывания эталонной линии в γлинии серии. Для задания формы эталонной линии использовалась одиночная линия из данного γ-спектра с большой интенсивностью и величиной энергии, близкой к энергии накладывающейся серии, описанной сплайнами.

Анализ спектров проводили, выбирая различные продолжительности пауз и времен измерений. Были надежно выделены γ-переходы изучавшихся ядер.

На рис. 1 указаны фрагменты схем распада исследуемых изомерных пар с выделенными γ переходами, которые использовались для идентификации распада как подпитывающих материнских ядер, так и основных и изомерных состояний ⁹⁰Rb, ¹³³Te, ¹³⁴I, ¹³⁵Xe. Характеристики ядер приведены в табл. 1. Экспериментальные значения изомерных отношений выходов (ИОВ) вычислялись с учетом вклада от β -распада изобарных ядер в выходы исследуемых изомерных пар (см. рис. 1).

Рис. 1. Фрагменты схем распада исследуемых изомерных пар.

$1 u 0 \pi u u u 1$. Cheki poekonn ieekie zapaki epiteinki $\pi d e p$	Таблииа 1.	Спектроскопические	характеристики яде	p
---	------------	--------------------	--------------------	---

Нуклид	T _{1/2}	J^{π}	E*, кэВ	Е, кэВ	f, %
⁹⁰ Kr	32,3 c	0^+	-	1119	39
^{90m} Rb	258 с	3-	107	1375	17
^{90g} Rb	158 c	0-	-	832	28
¹³³ Sb	2,5 мин	$7/2^{+}$	-	1096	43
^{133m} Te	55,4 мин	$11/2^{-1}$	334	334	7
^{133g} Te	12,5 мин	$3/2^{+}$	-	312	17
¹³⁴ Te	41,8 мин	0^+	-	767	29
^{134m} I	3,7 мин	8-	316	272	79
^{134g} I	52,6 мин	4^{+}	-	884	54
¹³⁵ I	6,6 ч	$7/2^{+}$	-	547	7
^{135m} Xe	15,3 мин	11/2-	527	527	80
^{135g} Xe	9,1 ч	3/2+	-	249	90

П р и м е ч а н и е. Е*- величина энергии изомерного состояния; Е и f – энергии γ-квантов, которые сопровождают распад нуклидов и их квантовые выходы соответственно.

Стоит отметить, что образец ²⁴¹Am имеел значительную массу и поэтому большое количество γ -переходов низкой интенсивности, которые сопровождают α -распад имели площади пиков, сравнимые с нужными нам площадями перехо-

Рис. 2. Фрагменты спектра фотоделения ²⁴¹Ат.

На рис. 2 и 3 показаны общие у-спектры и выделенные у-линии, которые сопровождают распад ¹³⁵I (547 кэВ), ^{135m}Xe (527 кэВ) и ^{135g}Xe (249,8 кэВ) при фотоделении ²⁴¹Am (см. рис. 2) и ²³³U (см. рис. 3). Видно, что в случае фотоделения ²⁴¹Am рядом с линией 249,8 кэВ присутствует у-переход с энергией 247 кэВ, который сопровождает распад самого ²⁴¹Am и благодаря хорошему разрешению неплохо отделяется от ү-линии с энергией 249.8 кэВ. После облучения ²⁴¹Ат подобная ситуация возникает при определении распада ¹³⁵І по у-линии с энергией 547 кэВ. В этом случае близкорасположенным является у-переход с энергией 545,5 кэВ, который сопровождает распад ²⁴¹Ат (см. рис. 2). В то же время при фотоделении ²³³U подобных проблем не существует, хотя в случае идентификации распада 135 I по линии с E = 547 кэВ и 135m Xe (527 кэВ) статистическая ¹³⁵I по точность довольно низкая (см. рис. 3). Для пары ^{90m,g}Rb (см. рис. 1) при идентификации распада ^{90g}Rb (832 кэВ) необходимо учесть подпитку за счет распада ^{90m}Rb (1375 кэВ). Для этого из суммарной площади пика ү-перехода с энергией 832 кэВ вычиталась площадь, которая соответствует распаду ^{90m}Rb. Она была определена методом пропорций из площади пика у-кванта с энергией 1375 кэВ, который соответствует только распаду ^{90m}Rb.

Отметим, что активность 241 Am составила 1,1 \cdot 10¹¹ Бк, следовательно для снижения мертвого времени спектрометрического тракта приходидов. Это обстоятельство усложняло γ-спектр и его анализ.

Характерные фрагменты γ -спектров продуктов фотоделения ²⁴¹ Am и ²³³ U приведены на рис. 2 и 3.

лось использовать фильтры, частично уменьшающие интенсивность γ -переходов в низкоэнергетической области. Из-за этого мы не могли использовать внешние источники для калибровки спектрометров по эффективности регистрации γ -квантов. Для калибровки спектрометров по эффективности регистрации использовались, в частности, как собственные γ -переходы после α -распада ²⁴¹ Am, так и γ -переходы из распада осколков деления, в частности ¹³⁸ Cs. Это несколько ухудшило качество кривой эффективности регистрации γ -квантов. В области до 400 кэВ, параметры калибровочной кривой определялись с погрешностью до 10 %, а выше - 5 % (рис. 4).

мишени составляла несколько микрограмм и поэтому для отдельных ү-переходов статистическая точность была довольно низкая.

Полученные значения изомерных отношений выходов приведены в табл. 2.

Е _{гр} , МэВ	10,5 МэВ	17 МэВ	9,8 МэВ	
Нуклид	233-	²⁴¹ Am		
Изомерная пара	Y_m/Y_g			
^{90m,g} Rb	0,9(3)	0,7(3)	1,1(3)	
^{133<i>m</i>,<i>g</i>} Te	3,2(8)	3,2(9)	1,6(2)	
^{134<i>m</i>,<i>g</i>} I	1,33(14)	1,8(5)	3,0(5)	
^{135<i>m</i>,<i>g</i>} Xe	0,14(2)	0,38(4)	0,18(1)	

Таблица 2. Изомерные отношения выходов

Обсуждение

Для расчета средних угловых моментов осколков деления по экспериментально определенным значениям ИОВ применялся программный пакет TALYS 1.4 [15]. При этом используется статистический механизм, основанный на теории Хаузера - Фешбаха, в котором учитывается конкуренция каналов вылета нейтронов и легких частиц, деление ядра, рассматриваются полные γ-каскады во всех остаточных ядрах. Это позволяет анализировать ядерно-физические характеристики не только конечных фрагментов деления после вылета нейтронов, но и осколков, образующихся сразу после процесса деления (до вылета из них всех нейтронов).

Для получения однозначного соответствия между средним угловым моментом \overline{J} первичного ядра-фрагмента и изомерным отношением ядраосколка после вылета всех мгновенных нейтронов необходимо иметь информацию о суммарной энергии возбуждения первичных фрагментов деления; распределении этой энергии между фрагментами; функции распределения заселенности состояний с заданным значением квантового числа J, которое определяет квадрат полного углового момента $\hbar^2 J(J+1)$ первичного ядра-фрагмента в изучаемом канале деления и относительный выход осколков из первичных фрагментов изобарной цепи, из которых после вылета мгновенных нейтронов образуется исследуемое ядро в основном и изомерном состояниях.

Расчет суммарной энергии возбуждения $< E_{tot}^* >$ проводим согласно [9, 10]):

$$\langle E_{tot}^* \rangle = a \cdot T_m^2$$

$$T_m = \frac{2}{3} \cdot \frac{\overline{\mathbf{v}_p}}{a} + \left[\left(\frac{2}{3} \cdot \frac{\overline{\mathbf{v}_p}}{a} \right)^2 + \frac{\left(\overline{\mathbf{v}_p} \cdot \langle S_n \rangle + \langle E_\gamma^{tot} \rangle \right)}{a} \right]^{1/2}, \tag{1}$$

где $a = \frac{A}{7}$, $< S_n > = < E_{\gamma}^{tot} > = 7,4$ МэВ; $\overline{v_p}$ –

средняя множественность по нейтронам; T_m – температура делящегося ядра; $< S_n > -$ средняя энергия отделения нейтрона для осколков деления; $< E_{\gamma}^{tot} > -$ средняя общая энергия, уносимая мгновенными γ -квантами; a – параметр плотности уровней ядра.

Значение $\overline{v_p}$ рассчитывалось для ²³³U и ²⁴¹Am по формуле [17]

$$\overline{\mathbf{v}_p} = 1,862 + 0,123 \cdot E_{_{2p}}$$
. (2)

В случае распада с образованием компаундядра можна считать, что осколки находятся в термодинамическом равновесии и имеют одинаковую температуру T_i , как и температуру T_m .

Используя соотношение (1), получим, что энергии возбуджения $\langle E_i^* \rangle = a \cdot T_i^2$ фрагментов деления распределяются пропорционально их массам:

 $< E_1^* > / < E_2^* >= A_1 / A_2,$ $< E_1^* > + < E_2^* >= < E_{tot}^* >,$ (3)

где $< E_1^* >$, $< E_2^* >$, A_1 , A_2 – энергии возбуждения и массовые числа фрагментов деления.

Распределение угловых моментов использовалось в качестве входного параметра и определяло значения изомерных отношений выходов. При этом во входном файле TALYS задавались значения энергии возбуждения фрагмента деления, а заселенность состояния с данным значением углового момента J считалась постоянной. При этом предполагалось, что заселяются состояния с одним Ј. Последовательно перебирались значения от 0,5 до 15,5 для нечетных ядер и от 1 до 16 для четно-четных и нечетно-нечетных ядер с шагом 1 в обоих случаях. Максимальное значение J определялось значением ИОВ. Для расчета ИОВ использован упрощенный статистический подход, который рассмотрим на примере ^{135*m*,*g*}Хе при фотоделении ²³³U при $E_{ID} = 17$ МэВ [11]:

согласно формуле (2) $\overline{v_p} = 3,953$ и суммарная энергия возбуждения $\langle E_{tot}^* \rangle = 42,6$ МэВ из формулы (1). Из формулы (3) для пары $A_1 = 135$, $A_2 = 98$ энергия возбуждения ¹³⁵Хе $E^* = 24,7$ МэВ. Но при $\overline{v_p} = 3,953$ ядро ^{135m,g}Хе с большой вероятностью может образоваться также из ¹³⁶Хе, ¹³⁷Хе и ¹³⁸Хе после испарения из этих изотопов одного, двух и трех нейтронов соответственно. Поэтому расчет энергии возбуждения проводится также и для изотопов ¹³⁶⁻¹³⁸Хе. Согласно формуле (3) для пары $A_1 = 136$, $A_2 = 97$ энергия возбуждения ¹³⁶Хе $E^* = 24,9$ МэВ; для пары $A_1 = 137$, $A_2 = 96$ энергия возбуждения ¹³⁷Хе $E^* = 25,1$ МэВ и для пары $A_1 = 138$, $A_2 = 95$ энергия возбуждения ¹³⁸Хе $E^* = 25,2$ МэВ;

для 135 Хе при $E^* = 24,7$ МэВ вычислялись заселенности основного и изомерного состояний и далее по программе TALYS 1.4 моделировалась зависимость изомерных отношений выходов для ^{135*m*,*g*}Хе от углового момента *J*, начальных состояний и вероятности заселенности P(J). В результате моделирования также рассчитывалась вероятность заселения *P*(*J*) для определенных значений ИОВ. Из построенной зависимости определялся угловой момент J и вероятность заселения P(J), при которых теоретическое значение изомерного отношения выходов совпадало с экспериментальным. В данном эксперименте ИОВ с наибольшей вероятностью формируется в результате реакций (f, γ) , $(f, n\gamma)$, $(f, 2n\gamma)$, u $(f, 3n\gamma)$. Экспериментальные значения отношений заселенностей метастабильного и основного состояний ¹³⁵Хе для каждой пары из упомянутых реакций точно не известны. Однако если считать, что при делении выход ядер-фрагментов изобарной цепи примерно одинаков, а заселенности изомерного и основного состояний формируются распадом состояний в узкой области энергий вблизи энергии отделения нейтрона и отношение заселенности слабо зависит от энергии возбуждения [16], то отношения заселенностей из упомянутых реакций можно считать одинаковыми. Поэтому здесь и ниже в качестве экспериментальных значений ИОВ для разных каналов их формирования используются значения из табл. 2;

аналогичные значения *J* и *P*(*J*) находились также для ¹³⁶Хе при $E^* = 24,9$ МэВ, ¹³⁷Хе при $E^* = 25,1$ МэВ и для ¹³⁸Хе при $E^* = 25,2$ МэВ: $J = J_{\alpha}, P(J_{\alpha}) \equiv P_{\alpha}, \alpha = 136,137,138$;

после этого определялся средний угловой момент данного фрагмента деления:

$$\overline{J} = \frac{\sum_{\alpha} J_{\alpha} P(J_{\alpha})}{\sum_{\alpha} P(J_{\alpha})}, \quad \alpha = 136 \div 138, \quad \Delta \alpha = 1, \quad (4)$$

т.е в формуле (4) для расчета среднего углового момента для ¹³⁵Хе суммируются четыре пары значений J_{α} и $P(J_{\alpha})$, взятые из четырех вышеупомянутых зависимостей, при которых теоретические значения ИОВ для ¹³⁵Хе совпадают с экспериментальными.

Подобные расчеты проводились для других фрагментов деления. Значения \overline{J} , извлеченные из экспериментальных величин ИОВ для различных осколков, приведены в табл. 3. В таблице указаны лишь статистические погрешности, соответствующие погрешностям экспериментальных значений ИОВ.

Изомерная	²³³ ₉₂	J	²³⁵ ₉₂ U [11]	²³⁷ ₉₃ Np	[12]	24 95	¹³ Am
пара	10,5 МэВ	17 МэВ	9,6 МэВ	9,8 МэВ	17 МэВ	9,8 МэВ	17 МэВ [12]
$^{90m,g}_{37}{ m Rb}$	2,2(3)	2,0(3)	1,5(2)	1,5(3)	2,5(3)	2,5(3)	2,0(3)
$^{133m,g}_{52}{ m Te}$	6,6(8)	6,6(8)	6,5(5)	6,8(8)	6,8(18)	6,2(12)	5,1(12)
^{134m,g} ₅₃ I	8,2(3)	8,4(4)	6,9(1)	8,8(2)	8,7(2)	8,8(3)	8,2(2)
$^{135m,g}_{54}$ Xe	2,4(1)	3,5(1)	2,4(1)	2,9(1)	4,2(1)	2,9(1)	4,5(1)

Таблица 3. Средние угловые моменты (\overline{J})

В таблице приведены величины \overline{J} для изучавшихся ядер и для сравнения приведены данные о фотоделении ²³⁵U тормозными у-квантами с граничной энергией 9,6 МэВ [11], ²³⁷Np у-квантами с граничной энергией 9,8 и 17 МэВ и ²⁴¹Am у-квантами с граничной энергией 17 МэВ [12]. С учетом погрешности измерений не наблюдается значительных изменений в \overline{J} для легкого осколка ⁹⁰Rb как из четных по Z делящих систем, так и из нечетных. Мы отмечаем уменьшение \overline{J} для ¹³⁵Xe при уменьшении величины максималь-

ной энергии тормозных γ -квантов при облучении ядер ²³³U, ²³⁷Np и ²⁴¹Am. Уменьшение энергии E_{rp} на 6,5 или 7,2 МэВ на фоне 200 МэВ, которая выделяется в процессе деления вряд ли влияет на изменение \overline{J} . Более вероятным фактором является то, что при энергии 17 МэВ доминирующим является фотоделение после вылета быстрого нейтрона (γ , *nf*). В этом случае доминирует фотоделение на нечетно-нечетных ядрах ²³⁶Np, ²⁴⁰Am и четно-четных нуклидах ²³²U. Возможно, это указывает на большую роль нечетно-нечетных и чет-

но-четных эффектов в делящихся системах с образованием 135 Xe. В то же время совершенно иное поведение величин \overline{J} для ядер ¹³³Те и ¹³⁴I, хотя число нейтронов в них N = 81, как и для ¹³⁵Хе. В пределах погрешности измерений величины \overline{J} слабо зависят как от изменения N и Z в делящихся системах, так и от энергии тормозных у-квантов. Возможно, что в этом случае большую роль играет то, что легкий осколок деления, который вылетает вместе с 133 Те или 134 I, находится по Z в граничной области вблизи Z = 40. Величина Z для ¹³⁵Хе находится ниже полумагического значения Z = 40 за исключением ²⁴¹Am, а для ¹³³Te и ¹³⁴I – выше, за исключением ²³³U. Это приводит к изменению плотности низкоспиновых состояний с конфигурациями $p_{3/2}$ и $p_{1/2}$ по сравнению с высокоспиновыми состояниями, которые описываются конфигурацией g_{9/2}, что в свою очередь ведет к изменению ИОВ и \overline{J} .

Для более детальных выводов необходимо дальнейшее получение информации о фотоделении трансурановых нуклидов как выше, так и

- 1. *Naik H., Dange S. P., Singh R. J.* Angular momentum of fission fragments in low energy fission of actinides // Phys. Rev. - 2005. - Vol. C71. - P. 014304.
- Бесшейко О.А., Желтоножский В.А., Каденко И.Н., Стрильчук Н.В. Измерение изомерных отношений в продуктах фотоделения ²³²Th // Зб. наук. праць Ін-ту ядерних досл. - 2002. - № 2(8). - С. 46 - 50.
- Вишневский И.Н., Желтоножский В.А., Давидовская О.И., Саврасов А.Н. Исследование фотоделения²³²Th и ²³⁸U // Изв. РАН. Сер. физ. 2009. -Т. 73, № 6. - С. 782 - 785.
- Thierens H., De Frenne D., Jacobs E. et al. Product yields for the photofission of ²³⁵U and ²³⁸U with 25-MeV bremsstrahlung // Phys. Rev. - 1976. - Vol. C14, No. 3. - P. 1058 - 1067.
- Jacobs E., ThierensH., De Frenne D. et al. Product yields for the photofission of ²³⁸U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung // Phys. Rev. - 1979.
 Vol. C19, No. 2. - P. 422 - 432.
- Jacobs E., Thierens H., De Frenne D. et al. Product yields for the photofission of ²³⁵U with 12-, 15-, 20-, 30-, and 70-Mev bremsstrahlung // Phys. Rev. - 1980.
 Vol. C21, No. 1. - P. 237 - 245.
- Thierens H., Proot B., De Frenne D., Jacobs E. Independent isomeric yield ratio of ¹³⁴I in the photofission of ²³⁵U and ²³⁸U // Phys. Rev. 1982. Vol. C25, No. 3. P. 1546 1550.
- De Frenne D., Proot B., Thierens H. et al. Independent isomeric yield ratios and primary angular momenta in the photofission of ^{235,238}U with 12 30-MeV bremsstrahlung // Phys. Rev. 1984. Vol. C29, No. 5. P. 1777 1783.
- 9. Бесшейко О.А., Вишневский И.Н., Желтоножский В.А. и др. Изучение изомерных отношений на ядрахпродуктах фотоделения ²³⁸U и ²³⁷Np // Зб. наук. праць Ін-ту ядерних досл. - 2004. -№ 2(13). - С. 17 - 23.

ниже порога реакции (γ , n*f*) и уточнение величин \overline{J} для ядер вблизи $^{132}_{50}$ Sn⁸².

Заключение

Проведены измерения изомерных отношений выходов и определены средние угловые моменты для легких и тяжелых осколков при фотоделении ²³³U и ²⁴¹Am тормозными γ-квантами с граничной энергией 9,8, 10,5 и 17 МэВ. Наблюдается влияние четно-четных и нечетно-нечетных эффектов в делящихся системах.

Представляет большой интерес продолжение измерений изомерных отношений выходов фрагментов деления при энергиях тормозных γ -квантов в области энергий как выше, так и ниже порога реакции (γ , nf) для других трансурановых нуклидов и повышение точности определения величин \overline{J} в исследуемых ядрах.

Авторы выражают благодарность В. А. Плюйко за многочисленные обсуждения и ценные замечания.

СПИСОК ЛИТЕРАТУРЫ

- Бесшейко О.А., Вишневский И.Н., Желтоножский В.А. и др. Изомерные отношения и средние угловые моменты для продуктов фотоделения ²³⁸U и ²³⁷Np // Изв. РАН. Сер. физ. - 2005. - Т. 69, № 5. -С. 658 - 662.
- Вишневский И.Н., Желтоножский В.А., Давидовская О.И., Саврасов А.Н. Исследование фотоделения ²³⁵U и ²³⁹Pu // Изв. РАН. Сер. физ. 2010. Т. 74, № 4. С. 538 541.
- Вишневский И.Н., Желтоножский В.А., Саврасов А.Н. Исследование фотоделения ²³⁷Np и ²⁴¹Am // Изв. РАН. Сер. физ. - 2012. - Т. 76, № 8. - С. 1017 - 1020.
- Вишневский И.Н., Желтоножский В.А., Решитько С.П. Измерение изомерных отношений в ядрахпродуктах деления ²³²Th // Изв. РАН. Сер. физ. -1997. - Т. 61, № 1. - С. 102 - 105.
- 14. Хоменков В.П. Дослідження атомно-ядерних ефектів в процесі внутрішньої конверсії гамма-променів: Автореф. дис. ... канд. фіз.-мат. наук. К., 2003. 19 с.
- Koning A.J., Hilaire S., Duijvestijn M.C. TALYS: Comprehensive Nuclear Reaction Modeling // Proc. Int. Conf. on Nuclear Data for Science and Technology (Santa Fe, USA) // AIP Conference Proceedings. -2004. - P. 1154 - 1159.
- 16. Vyshnevskyi I.M., Zheltonozhskii V.O., Savrasov A.M. et al. Isomer yield ratios of ¹³³Te, ¹³⁴I, ¹³⁵Xe in photofission of ²³⁵U with 17 MeV bremsstralung // Nucl. Phys. At. Energy. - 2014. - Vol. 15, No. 2. - C. 102 - 105.
- Caldwell J.T., Dowdy E. J., Alvarez R. et al. Experimental Determination of Photofission Neutron Multiplicities for ²³⁵U, ²³⁶U, ²³⁸U, and ²³²Th Using Monoenergetic Photons // Nuclear Science and Engineering. 1980. Vol. 73, No. 1. P. 153 163.
- Madland D.G. Theory of Neutron Emission in Fission // Proc. Workshop ICTP (Trieste, Italy, 23 Feb - 27 March, 1998). - Singapore: World Sci., 1999. - P. 46 - 56.

І. М. Вишневський, В. О. Желтоножський, А. М. Саврасов, Є. П. Ровенських

Інститут ядерних досліджень НАН України, Київ

ДОСЛІДЖЕННЯ ФРАГМЕНТІВ ФОТОПОДІЛУ ²³³U I ²⁴¹Am

Виміряно ізомерні відношення виходів ізомерних пар ядер ⁹⁰Rb, ¹³³Te, ¹³⁴I і ¹³⁵Xe, утворених у результаті фотоподілу ²³³U гальмівними γ -квантами з величиною граничної енергії 10,5 і 17 МеВ і ²⁴¹Am γ -квантами з величиною граничної енергії 9,8 МеВ. Ізомерні відношення розраховувались з урахуванням внеску від розпаду ізобарних ядер у виходи досліджуваних ізотопів. Визначено середні кутові моменти досліджуваних уламків поділу в рамках статистичної моделі розпаду.

Ключові слова: фотоподіл, ізомерні відношення виходів, активаційна методика, обчислення в TALYS.

I. M. Vyshnevskyi, V. O. Zheltonozhskyi, A. M. Savrasov, E. P. Rovenskykh

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

INVESTIGATION OF ²³³U AND ²⁴¹Am PHOTOFISSION FRAGMENTS

Isomeric yield ratios of ⁹⁰Rb, ¹³³Te, ¹³⁴I and ¹³⁵Xe fission fragments have been measured. Fragments have been created in photofission of ²³³U nuclei by bremmsstrahlung photons with end-point energy near 10.5 and 17 MeV and of ²⁴¹Am nuclei irradiated by bremmsstrahlung photons with end-point energy near 9.8 MeV. Experimental values of isomeric yield ratios have been calculated with allowing for the contribution from beta-decay of isobaric nuclei in yields of investigated isotopes. Average angular moments of investigated fission fragments have been determined using the statistical model of decay.

Keywords: photofission, isomeric yields ratios, activation method, TALYS calculations.

REFERENCES

- Naik H., Dange S. P., Singh R. J. Angular momentum of fission fragments in low energy fission of actinides // Phys. Rev. - 2005. - Vol. C71. - P. 014304.
- Bezsheyko O.A., Zheltonozhsky V.A., Kadenko I.N., Strilchuk N.V. Measurement of isomeric ratios in ²³²Th photofission products // Zb. nauk. prats' In-tu yadernykh dosl. - 2002. - No. 2(8). - P. 46 - 50. (Rus)
- Vyshnevskyi I.N., Zheltonozhskyj V.A., Davidovskaya O.I., Savrasov A.N. // Izv. RAN. Ser. fiz. - 2009. -Vol. 73, No. 6. - P. 782 - 785. (Rus)
- Thierens H., De Frenne D., Jacobs E. et al. Product yields for the photofission of ²³⁵U and ²³⁸U with 25-MeV bremsstrahlung // Phys. Rev. - 1976. - Vol. C14, No. 3. - P. 1058 - 1067.
- Jacobs E., ThierensH., De Frenne D. et al. Product yields for the photofission of ²³⁸U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung // Phys. Rev. - 1979.
 - Vol. C19, No. 2. - P. 422 - 432.
- Jacobs E., Thierens H., De Frenne D. et al. Product yields for the photofission of ²³⁵U with 12-, 15-, 20-, 30-, and 70-Mev bremsstrahlung // Phys. Rev. - 1980.
 - Vol. C21, No. 1. - P. 237 - 245.
- Thierens H., Proot B., De Frenne D., Jacobs E. Independent isomeric yield ratio of ¹³⁴I in the photofission of ²³⁵U and ²³⁸U // Phys. Rev. 1982. Vol. C25, No. 3. P. 1546 1550.
- De Frenne D., Proot B., Thierens H. et al. Independent isomeric yield ratios and primary angular momenta in the photofission of ^{235,238}U with 12 30-MeV bremsstrahlung // Phys. Rev. 1984. Vol. C29, No. 5. P. 1777 1783.
- Bezshyyko O.A., Vyshnevskyi I.N., Zheltonozhskyi V.A et al. Isomeric ratio study of photofission fragments of ²³⁸U and ²³⁷Np // Zb. nauk. prats' In-tu yadernykh dosl. - 2004. - No. 2(13). - P. 17 - 23. (Rus)

- Besshejko O.A., Vyshnevskyi I.N., Zheltonozhskyi V.A. et al. // Izv. RAN. Ser. fiz. - 2005. - Vol. 69, No. 5. -P. 658 - 662. (Rus)
- Vyshnevskyi I.N., Zheltonozhskyi V.A., Davidovskaya O.I., Savrasov A.N. // Izv. RAN. Ser. fiz. - 2010. -Vol. 74, No. 4. - P. 538 - 541. (Rus)
- Vyshnevskyi I.N., Zheltonozhskyi V.A., Savrasov A.N. // Izv. RAN. Ser. fiz. - 2012. - Vol. 76, No. 8. -P. 1017 - 1020. (Rus)
- Vishnevsky I.N., Zheltonozhsky V.A., Reshit'ko S.P. // Izv. RAN. Ser. fiz. - 1997. - Vol. 61, No. 1. - P. 102 -105. (Rus)
- 14. *Khomenkov V.P.* Research of atomic and nuclear effects in the gamma rays internal conversion: Avtoref. dys. ... kand. fiz.-mat. nauk. K., 2003. 19 p. (Ukr)
- Koning A.J., Hilaire S., Duijvestijn M.C. TALYS: Comprehensive Nuclear Reaction Modeling // Proc. Int. Conf. on Nuclear Data for Science and Technology (Santa Fe, USA) // AIP Conference Proceedings. -2004. - P. 1154 - 1159.
- 16. Vyshnevskyi I.M., Zheltonozhskii V.O., Savrasov A.M. et al. Isomer yield ratios of ¹³³Te, ¹³⁴I, ¹³⁵Xe in photofission of ²³⁵U with 17 Mev bremsstralung // Nucl. Phys. At. Energy. - 2014. - Vol. 15, No. 2. - C. 102 - 105.
- Caldwell J.T., Dowdy E. J., Alvarez R. et al. Experimental Determination of Photofission Neutron Multiplicities for ²³⁵U, ²³⁶U, ²³⁸U, and ²³²Th Using Monoenergetic Photons // Nuclear Science and Engineering. 1980. Vol. 73, No. 1. P. 153 163.
- Madland D.G. Theory of Neutron Emission in Fission // Proc. Workshop ICTP (Trieste, Italy, 23 Feb - 27 March, 1998). - Singapore: World Sci., 1999. - P. 46 - 56.

Надійшла 08.05.2014 Received 08.05.2014