# ТЕХНІКА ТА МЕТОДИ ЕКСПЕРИМЕНТУ

УДК: 539.125.516.24; 539.125.518.3; 539.125.523.348

## В. А. Лібман, О. О. Грицай, С. П. Волковецький

Інститут ядерних досліджень НАН України, Київ

# МОДЕЛЮВАННЯ НОВОГО НЕЙТРОННОГО ФІЛЬТРА З ЕНЕРГІЄЮ 5,6 кеВ

На основі останніх версій бібліотек оцінених ядерних даних (БОЯД) (ENDF/B-VII.1 та CENDL-3.1) змодельовано новий інтерференційний нейтронний фільтр із середньою енергією 5,6 кеВ. Основні компоненти фільтра: <sup>60</sup>Ni, марганець, сірка та оксид церію. Очікувані характеристики фільтра: середня енергія 5,62 кеВ, ширина нейтронної лінії 1,73 кеВ, чистота основної лінії 84 %, щільність потоку нейтронів 2·10<sup>5</sup> н/(с·см<sup>2</sup>). Експериментальна перевірка параметрів нового фільтра планується під час наступної кампанії роботи реактора BBP-M.

Ключові слова: бібліотеки оцінених ядерних даних, фільтровані пучки нейтронів, чисельне моделювання.

#### Вступ

До моделювання фільтра з середньою енергією 5,6 кеВ нас спонукали деякі обставини. Відомо, що діапазон енергій від 0,2 до 10 кеВ є діапазоном розділених резонансів, і тому чим детальніше ми зможемо дослідити цей діапазон, тим більше інформації про структуру атомних ядер можна здобути. У нашому відділі (відділ нейтронної фізики) цей діапазон перекривався фільтрами 1,9; 2,0; 3,4 та 7,4 кеВ, і дуже бажано додати в цей діапазон ще хоча б одну енергію. Моделювання цього фільтра виконувалося за допомогою програми *Filter*, версія 7 [1].

# Вибір основних компонентів фільтра

В основу цього фільтра було взято природний марганець та ізотоп <sup>60</sup>Ni. Якщо детально розглянути повні нейтронні перерізи цих матеріалів (рис. 1), можна побачити досить глибокий (при-



Рис. 1. Повні нейтронні перерізи <sup>60</sup>Ni, марганцю та сірки (ENDF/B-VII.1).

близно до 10 мб) інтерференційний мінімум в  ${}^{60}$ Ni при енергії 4,9 кеB, але крім цього мінімуму у  ${}^{60}$ Ni є ще багато мінімумів - при енергіях 28, 43, 65, 86, 97, 107 тощо.

З цього рисунка видно, що більшість цих мінімумів може суттєво подавити невеликий (~ 15 г/см<sup>2</sup>) додаток марганцю (лінії 28, 43, 65 та 86 кеВ). А лінії з енергіями від 90 до 200 кеВ досить ефективно подавить сірка (~ 38 г/см<sup>2</sup>).

Оскільки всі ці компоненти мають невеликий переріз для теплових та епітеплових нейтронів, а також щоб запобігти активації компонентів (особливо марганцю), до складу фільтра необхідно додати <sup>10</sup>В, що має великий переріз для теплових нейтронів та залежність перерізу від енергії нейтронів типу  $1/E^{1/2}$ . Таким чином, ці чотири компоненти дають змогу сформувати попередній варіант фільтра з середньою енергією ~ 5,6 кеВ (рис. 2).

Інтенсивність фільтра, відн. од.



Рис. 2. Перший варіант фільтра з енергією ~ 6 кеВ.

© В. А. Лібман, О. О. Грицай, С. П. Волковецький, 2015

На рис. З показано основну лінію фільтра із середньою енергією 5,6 кеВ більш детально.

Розрахункові параметри фільтра: середня енергія основної лінії 5,6 кеВ, напівширина 1,7 кеВ, відносна чистота 81 %, очікувана щільність потоку нейтронів 3,6·10<sup>5</sup> н/(см<sup>2</sup>·с). Параметри до-



Таблиця 1. Параметри домішкових ліній

| Енергія<br>домішкової<br>лінії, кеВ | Напівширина,<br>кеВ | Внесок,<br>% |
|-------------------------------------|---------------------|--------------|
| 0,8 + 1,2                           | 0,15                | 1,37         |
| 27,7                                | 0,31                | 0,53         |
| 42,9                                | 0,05                | 0,34         |
| 64,5                                | 1,14                | 0,21         |
| 86,3                                | 0,42                | 1,91         |
| 130÷1900                            |                     | 14,32        |

Головна небезпека наявності цих лінії в тому, що, оскільки залежність перерізу від енергії має характер 1/v, то навіть невелика домішка нейтронів низьких енергій може призвести до значної похибки у визначенні перерізу. Відзначимо, що при вимірюванні повного нейтронного перерізу методом пропускання з використанням водневого лічильника внесок цих ліній, так само як і більш жорстких домішок, можна врахувати. Однак у діапазоні енергій нейтронів нижче 10 кеВ водневі лічильники працюють «невпевнено» через чутливість їх до гамма-випромінювання, а на гелієвому лічильнику розділити вклади ліній 1,2 та 5,6 кеВ неможливо. Для визначення перерізу активації такі домішки взагалі неприпустимі, бо внесуть дуже великі похибки через залежність 1/v. Саме тому було розпочато пошук шляхів покращення цього фільтра, у першу чергу намагаючись позбутися домішкових ліній 0,8 та 1,2 кеВ.

мішкових ліній та їхній внесок у сумарний потік наведено в табл. 1.

Головним недоліком цього варіанта фільтра є наявність домішкових ліній, найбільш небажаними з яких є лінії 0,8 та 1,2 кеВ (рис. 4).





# Боротьба з низькоенергетичними домішками та протиріччя БОЯД

Аналіз даних БОЯД допоміг знайти компоненту, що має великий переріз для нейтронів з енергією близько 1 кеВ, — це церій. Повний переріз ізотопу <sup>142</sup>Се (його в природній суміші ізотопів 11,08 %) для цього діапазону енергій перевищує 1000 б. Але дані чотирьох найновіших бібліотек (ENDF/B-VII.1; JENDL-4.0; JEFF-3.2 та CENDL-3.1) для цього ізотопу суттєво відрізняються. Оскільки для цього ізотопу дані в JEFF-3.2 взято з ENDF/B-VII.1, надалі порівнюються дані тільки трьох БОЯД: ENDF/B-VII.1; JENDL-4.0 та CENDL-3.1 (рис. 5).

Як бачимо, згідно з ENDF/B-VII.1<sup>142</sup>Се має два сильні резонанси при енергіях 1150 та 1281,5 еВ, а згідно з CENDL-3.1 та JENDL-4.0 – один резонанс при енергії 1278 еВ. Відрізняються бібліотеки також положенням мінімумів. Так, згідно з ENDF/B-VII.1 глибокий мінімум<sup>142</sup>Се знаходиться при енергії 302,8 еВ (9,6 мб), згідно з CENDL-3.1 – при енергії 368,3 еВ (8,6 мб), згідно з JENDL-4.0 – при енергії 588,3 еВ (11,8 мб).

Для моделювання наступного варіанта фільтра ми вибрали дві БОЯД – ENDF/B-VII.1 та CENDL-3.1, бо тільки в них були дані для всіх чотирьох ізотопів церію і ми змогли програмою MIXER з пакета PREPRO-2007 [2] одержати переріз для природного церію. Додавання ~ 12 г/см<sup>2</sup> природного церію у склад фільтра суттєво зменшило внесок низькоенергетичних ліній, хоч зменшило і щільність потоку нейтронів майже в півтора раза (рис. 6 і 7).



ас. 7. Порівняння впливу церію на низькоенергетичну домішку спектра a - 3гідно з ENDF/B-VII.1;  $\delta - 3$ гідно з CENDL-3.1.

Порівнюючи нижні частини рис. 7, можна побачити, що згідно з розрахунком за даними ENDF/B-VII.1 церій майже вдвічі сильніше давить домішкову лінію поблизу енергії 1,2 кеВ, ніж згідно з даними CENDL-3.1.

Які ж дані ближчі до істини? Оскільки розраховані за цими двома бібліотеками спектри відрізняються переважно тільки цими домішковими лініями, нами пропонується один із варіантів перевірки за допомогою вимірювань на залізі. На рис. 8 разом з лініями фільтра, що різняться, показаний переріз активації заліза згідно з даними BROND-2.2. Резонанс заліза при енергії ~1,15 кеВ частково перекриває лінію 1,2 кеВ, яка повинна виникати за версією CENDL-3.1 і майже не перекриває ту ж саму лінію за версією ENDF/B-VII.1. Порівняння експериментально одержаного значення перерізу активації заліза з розрахованими значеннями, усередненими по обох варіантах спектрів фільтра (за допомогою програми GROUPEE з пакета PREPRO-2007 [2]), може дозволити вирішити питання на користь однієї з бібліотек.

Перерізи активації заліза, усереднені по спектрах фільтра, розрахованих із використанням CENDL-3.1 та ENDF/B-VII.1, різняться приблизно на 20 %, тобто на величину, яку можна перевірити на експерименті.

# Оцінка щільності потоку нейтронів на виході фільтра

Оцінка щільності потоку нейтронів проводилась таким чином: спектр нейтронів реактора моделювався набором із трьох функцій –  $\Phi_{th}(E_n)$  +  $+ \Phi_{res}(E_n) + \Phi_{fis}(E_n)$ . Ця модель нейтронного спектра реактора досить близька до нейтронного спектра на виході з активної зони реактора типу BBP-M.





Тут:  $\Phi_{th}(E_n)$  – розподіл Максвелла в діапазоні енергій від 0 до 4 kT (kT = 0,0253 eB = 300K);  $\Phi_{res}(E_n)$  – розподіл 1/E<sub>n</sub> в діапазоні енергій від 4 kT до 67 кеВ;  $\Phi_{fis}(E_n)$  – розподіл поділу в діапазоні енергій від 67 кеВ до 20 МеВ.

Площа під спектром нормувалася на 10<sup>9</sup> н/(см<sup>2</sup> с), вихідні значення інтенсивності фільтрованих нейтронів (фактично у відносних одиницях) порівнювались з аналогічними результатами розрахунків для фільтрованих пучків, інтенсивність яких була відома з експерименту. Така методика застосовувалась нами і раніше, і експериментальна перевірка показала, що відмінність



між попередньо оціненою інтенсивністю і визначеною надалі експериментально лежить у межах декількох одиниць одного порядку.

#### Остаточний варіант фільтра

У табл. 2 наведено склад та розраховані параметри варіантів фільтра згідно з даними цих двох БОЯД. Експериментальна перевірка параметрів нового фільтра планується на наступному етапі (під час наступної кампанії роботи реактора BBP-M). На рис. 9 показано спектр нового фільтра в порівнянні з існуючими.

| Нуклід<br>(БОЯД)        | $^{10}B, r/cm^2$ (en7) | <sup>10</sup> B, r/cm <sup>2</sup><br>(en7) | <sup>60</sup> Ni, r/cm <sup>2</sup><br>(jn4) | S, r/cm <sup>2</sup><br>(en6) | Mn, r/cm <sup>2</sup><br>(jn4) | Al, r/cm <sup>2</sup><br>(en7) | <sup>16</sup> O, r/cm <sup>2</sup><br>(jn3) | Ce, r/cm <sup>2</sup> | Середня енергія,<br>кеВ | Напівширина,<br>кеВ | «Чистота», % | Щільність<br>потоку, н/(см <sup>2</sup> ·с) |
|-------------------------|------------------------|---------------------------------------------|----------------------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------------------|-----------------------|-------------------------|---------------------|--------------|---------------------------------------------|
| Без Се                  |                        |                                             |                                              |                               |                                |                                | 0                                           | 0                     | 5,63                    | 1,68                | 80,9         | 3,6·10 <sup>5</sup>                         |
| + Се по<br>ENDF/B-VII.1 | 3,10                   | 0,545                                       | 213,21                                       | 54,00                         | 14,84                          | 0,54                           |                                             |                       | 5,62                    | 1,73                | 83,9         | 2,0·10 <sup>5</sup>                         |
| + Се по<br>CENDL-3.1    |                        |                                             |                                              |                               |                                |                                | 2,79                                        | 12,21                 | 5,62                    | 1,74                | 84,0         | 2,0.105                                     |

Таблиця 2. Склад та параметри розрахованих варіантів фільтра

Примітка. en7 = ENDF/B-VII.1; en6 = ENDF/B-VI; jn4 = JENDL-4.0; jn3 = JENDL-3.3

# СПИСОК ЛІТЕРАТУРИ

1. http://ukrndc.kinr.kiev.ua/FILTER-7.html

2. https://www-nds.iaea.org/public/endf/prepro2007/

# В. А. Либман, Е. А. Грицай, С. П. Волковецкий

Институт ядерных исследований НАН Украины, Киев

# МОДЕЛИРОВАНИЕ НОВОГО НЕЙТРОННОГО ФИЛЬТРА С ЭНЕРГИЕЙ 5,6 кэВ

На основе последних версий библиотеки оцененных ядерных данных (ENDF/B-VII.1 и CENDL-3.1) смоделирован новый интерференционный нейтронный фильтр со средней энергией 5,6 кэВ. Основные компоненты фильтра: <sup>60</sup>Ni, марганец, сера и оксид церия. Ожидаемые характеристики фильтра: средняя энергия 5,62 кэВ, полуширина нейтронной линии 1,73 кэВ, чистота основной линии 84 %, плотность потока нейтронов 2·10<sup>5</sup> н/(с⋅см<sup>2</sup>). Экспериментальная проверка параметров нового фильтра планируется во время ближайшей кампании работы реактора BBP-M.

*Ключевые слова:* библиотеки оцененных ядерных данных, фильтрованные пучки нейтронов, численное моделирование.

## V. A. Libman, O. O. Gritzay, S. P. Volkovetsky

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

# **MODELING OF THE NEW NEUTRON FILTER WITH 5.6 keV ENERGY**

New filtered neutron beam with the average energy of 5.6 keV was simulated using the latest versions of the evaluated nuclear data libraries ENDF/B-VII.1 and CENDL-3.1. The main components of this new filter are:  $^{60}$ Ni, manganese, sulfur, and cerium oxide. Expected filter characteristics are: the average energy is 5.62 keV; neutron line width at half maximum is 1.73 keV; the purity of the main line is 84 %; the neutron flux is  $2 \cdot 10^5$  n/(s·cm<sup>2</sup>). Experimental testing of the parameters of this new filter will be produced during the next campaign of the reactor WWR-M.

Keywords: evaluated nuclear data libraries, filtered neutron beams, numerical simulation.

Надійшла 03.12.2014 Received 03.12.2014