УДК 539.142

= ЯДЕРНА ФІЗИКА =

И. Н. Вишневский¹, В. А. Желтоножский¹, В. А. Плюйко², А. Н. Саврасов¹, А. Н. Горбаченко², О. И. Давидовская¹, Е. П. Ровенских²

¹ Институт ядерных исследований НАН Украины, Киев ² Киевский национальный университет имени Тараса Шевченко, Киев

ИЗОМЕРНЫЕ ОТНОШЕНИЯ И СРЕДНИЕ УГЛОВЫЕ МОМЕНТЫ ФРАГМЕНТОВ ФОТОДЕЛЕНИЯ ²³⁵U, ²³⁷ Np И ²³⁹Pu

Измерены изомерные отношения выходов фрагментов фотоделения ядер ²³⁵U, ²³⁷Np и ²³⁹Pu тормозными уквантами с граничной энергией 18 МэВ. Получены новые данные для выходов изомерных пар ядер ⁸⁴Br, ⁹⁰Rb, ¹³¹Te, ¹³²Sb, ¹³²I, ¹³³Te, ¹³⁴I, ¹³⁵Xe. Изомерные отношения определены с вычетом вклада заселенностей состояний исследуемых фрагментов от β-распада соответствующих изобарных ядер. Определены средние угловые моменты фрагментов деления в рамках обобщенной статистической модели Хьюзенга - Ванденбоша с использованием кода EMPIRE 3.2.

Ключевые слова: фотоделение, метод изомерных отношений, средние угловые моменты продуктов деления.

Введение

Измерение отношения выходов (*R*) (эффективных сечений образования) первичных ядеросколков в высоко-спиновом состоянии (как правило, изомерном) и низко-спиновом состоянии (как правило, основном) является одним из основных методов получения информации о средних угловых моментах фрагментов деления, что позволяет уточнить динамику деления ядра [1 - 6].

Данные об изомерных отношениях продуктов деления также необходимы для решения ряда прикладных задач ядерной и радиационной физики. В частности, ядра-фрагменты вдали от линии β-стабильности часто имеют изомерные пары с периодами полураспада Т_{1/2}, отличающимися на порядок и более. При этом данные о характеристиках состояний с *T*_{1/2} > 10 с можно изучать измеряя ү-спектры, а для состояний с $T_{1/2} \sim \mathrm{Mc}$ это сделать очень сложно. Однако с помощью данных по изомерным отношениям и у-спектрам долгоживущего изомера можно оценить вклад в полную интенсивность у-переходов от примеси короткоживущих изомеров, что является важным при анализе массовых распределений осколков деления.

Исследования, представленные в данной работе, являются продолжением изучения с помощью изомерных отношений средних угловых моментов осколков фотоделения, вызванного γ -квантами тормозного излучения с различными граничными энергиями ([7 - 9], и ссылки в [9]). Здесь представлены результаты исследования фотоделения нечетных трансурановых ядер ²³⁵U, ²³⁷Np и ²³⁹Pu при граничной энергии γ -облучения E_e =18 МэВ. Такой выбор энергии обусловлен

тем, что в этом случае при фотоделении ожидается максимальный выход реакции (γ , *nf*) и такая энергия E_e ниже порога реакции (γ , 2*nf*) на этих ядрах.

На рис. 1 показаны схемы распада осколков деления ⁸⁴Br, ⁹⁰Rb, ¹³¹Te, ¹³²Sb, ¹³²I, ¹³³Te, ¹³⁴I, ¹³⁵Xe, для которых измерялись изомерные отношения. Видно, что во всех этих ядрах основной и изомерный уровни также заселяются за счет β -распада соответствующего материнского ядра их изобарной цепи. Очень часто значение заселенности за счет такой вторичной подпитки может на порядки превышать прямую заселенность основного и изомерного состояний ядра-фрагмента, образующегося после фотоделения и вылета мгновенных нейтронов. В данной работе изомерные отношения определены с вычетом вклада от β -распада родственных изобарных ядер в выходы исследуемых фрагментов.

Методика и экспериментальные результаты

В исследованиях изомерных отношений, выполненных ранее, часто использовалась радиохимическая методика [10 - 12]. Как отмечалось выше, при делении происходит образование осколков деления, имеющих изомерные состояния изобарных ядер, которые позже заселяют изучаемые изомеры (см. рис. 1). В этом случае при использовании радиохимического метода корректный учет вторичной подпитки состояний исследуемых изомерных пар в первичных фрагментах деления невозможен, так как в зависимости от времени проведения радиохимического выделения данного изотопа (которое очень сложно контролировать) будет изменяться и доля

[©] И. Н. Вишневский, В. А. Желтоножский, В. А. Плюйко, А. Н. Саврасов, А. Н. Горбаченко, О. И. Давидовская, Е. П. Ровенских, 2015

Рис. 2. Характерные спектры ядра-осколка ¹³³Те в фотоделении ядер ²³⁵U, ²³⁷Np и ²³⁹Pu: N – суммарное количество отсчетов за время $t_{_{U3M}}$; Е – энергия, регистрируемая детектором γ -квантов; Е γ – энергия γ -перехода в ¹³³Te.

заселенности их состояний от β-распада родственных изобарных ядер. Кроме того, в радиохимической методике не учитывается вторичная подпитка состояний данного ядра от его изобара во время облучения. При соизмеримых временах облучения и периодов полураспада исследуемых ядер эта величина может значительно превышать вероятность прямого заселения состояний изомеров в первичных фрагментах деления. Поэтому в данной работе измерения γ-спектров проводились сразу после облучения, а радиохимический метод не использовался. Вклад в заселенность состояний изомерной пары от распада родственного изобарного ядра исключался с помощью системы кинетических уравнений баланса заселенностей [13] с учетом известных значений периодов полураспада изобар (см. рис.1).

Для облучения использовались обогащенные изотопами мишени из U (235 U – 90 %, 238 U – 10 %), Np (237 Np – 100 %) и Pu (239 Pu – 95,5 %, ²⁴⁰Ри – 4,5 %) массой 514, 853 и 400 мг сответственно. Мишени были упакованы в контейнеры из нержавеющей стали. Мишени облучались у-квантами тормозного спектра электронов микротрона М-30 с максимальной энергией 18 МэВ (ИЭФ НАН Украины, Ужгород). В качестве тормозной мишени использовалась тонкая танталовая мишень, поэтому спектр тормозного излучения имел вид спектра Шиффа. Облучение проводилось в течение времени $t_{o\delta a} = 5 - 10$ мин, а после времени охлаждения и транспортировки мишени $t_{oxy} = 15 - 20$ с за облучением начинались измерения. В измерениях использовались спектрометры на базе Ge-детекторов с разрешением 2,0 кэВ для у-линии 1330 кэВ 60Со. Через каждые 60 с спектры записывались в течение всего времени измерения $t_{\rm изм}$, которое составляло 1 - 2 ч. Для обработки спектров использовался пакет программ Winspectrum [14]. Анализ спектров проводился для различных продолжительностей пауз и времен измерений с учетом периодов полураспада изомеров и изобарного нуклида каждого осколка деления. Характерные спектры продуктов фотоделения ²³⁵U, ²³⁷Np и ²³⁹Pu приведены на рис. 2.

Далее, используя полученные данных об интенсивностях γ -переходов и решая систему кинетических уравнений баланса заселенностей, находились экспериментальные значения изомерных отношений с вычетом вклада заселенностей от β -распада родственных изобарных ядер. Результаты приведены в табл. 1, где для сравнения представлены и значения изомерных отношений при фотоделении тормозными γ -квантами с граничной энергией 9,8 МэВ (при такой энергии деление происходит только через один канал - (γ, f) [15].

Таблица 1. Измеренные изомерные отношения выходов ядер ⁸⁴Br, ⁹⁰Rb, ¹³¹Te, ¹³²Sb, ¹³²I, ¹³³Te, ¹³⁴I, ¹³⁵Xe

Ядро	²³⁵ U		²³⁷ Np		²³⁹ Pu	
	18 МэВ	9,8 МэВ	18 МэВ	9,8 МэВ	18 МэВ	9,8 МэВ
⁸⁴ Br	0,14(1)	-	0,15(1)	-	0,118(6)	-
⁹⁰ Rb	-	-	1,2(2)	-	1,0(2)	-
¹³¹ Te	2,6(5)	-	1,9(3)	-	3,2(6)	0,44(5)
¹³² Sb	1,46(22)	0,58(6)	1,01(12)	-	1,48(16)	4,5(15)
¹³² I	2,2(4)	-	0,95(15)	-	0,51(6)	-
¹³³ Te	4,3(3)	2,3(3)	9,0(9)	1,8(2)	5,3(3)	2,6(3)
¹³⁴ I	0,58(9)	0,49(5)	-	2,7(2)	1,26(25)	0,96(10)
¹³⁵ Xe	0,056(7)	0,142(14)	0,041(6)	0,18(2)	0,066(7)	0,42(4)

П р и м е ч а н и е. В скобках указаны статистические погрешности измерений. Цифры в скобках относятся к последним значащим цифрам средних значений.

Средние угловые моменты и обсуждение результатов

Экспериментальные данные об изомерных
$$P($$

отношениях были использованы для определе-
ния распределений $P(J)$ вероятности заселения
уровней с угловым моментом J и средних угло-

вых моментов *J* первичных осколков фотоделе-
ния (в единицах
$$\hbar$$
):
 $\overline{J} = \sum_{J} JP(J) / \sum_{j} P(j)$. (1)

Были использованы следующие выражения для распределения состояний первичных ядерфрагментов по угловым моментам (см. [9] и ссылки):

$$P(J) = (2J+1)\exp(-J(J+1)/2B^2 - \lambda J), \quad (2)$$

$$P(J) = (2J+1)\exp(-J(J+1)/2(B+\mu)^2), (3)$$

где B - параметр «обрезания» по спину, который вычислялся по модели ферми-газа (см. ниже). Параметры λ , μ находились подгонкой экспериментальных значений изомерных отношений выходов ядер к теоретическим.

Теоретические значения изомерных отношений выходов вычислялись с помощью предложенного нами ранее варианта статистической модели [9], который является обобщением статистической модели Хьюзенга - Ванденбоша [16 -18] без использования концепции решающего γ-перехода. Такая обобщенная модель Хьюзенга - Ванденбоша основана на следующих положениях: 1) основные и изомерные состояния ядра заселяются γ -каскадами после вылета мгновенных нейтронов из первичного осколка фотоделения, когда термодинамическая энергия возбуждения ядра U ниже энергии отделения нейтрона S_n ; 2) так как ядро-изомер может формироваться после вылета мгновенных нейтронов с разными энергиями, то энергия возбуждения состояний

ется функцией распределения по энергии возбуждения φ ; 3) мгновенные нейтроны вылетают в основном с малыми орбитальными моментами такими, что распределение состояний по угловому моменту в ядре продукте перед γ -переходами незначительно отличается от P(J) в первичном ядре-фрагменте. Поэтому для расчета теоретических значений изомерных отношений используется выражение

перед у-излучением точно не определена и зада-

$$R = \sum_{J,\pi} \int dU \cdot \varphi(U) \cdot P(J) \cdot g_m(U,J,\pi) / \sum_{j,\pi} \int dU \cdot \varphi(U) \cdot P(j) \cdot g_g(U,j,\pi) , \qquad (4)$$

где $g_m(U,J,\pi)$ ($g_g(U,J,\pi)$) - вероятность заселения у-излучением изомерного (основного) уровня из состояний с энергией возбуждения U, спином J и четностью $\pi = \pm 1$. Функция распределения по энергии возбуждения $\phi(U)$ аппроксимирована ступенькой с ненулевым значением в интервале $\Delta U = U_{\min} \div U_{\max}$ с $U_{\min} =$ = $0,5S_n + n\Delta_0 + E_{rot}(J)$ H $U_{max} = S_n + n\Delta_0 + E_{rot}(J)$, где $n\Delta_0$ - энергия спаривания с $\Delta_0 = 12/\sqrt{A}$ и n = 2, 1, 0 для парно-парных, парно-непарных, непарно-непарных ядер соответственно. Вращательная энергия $E_{rot}(J)$ выбирается в виде $E_{rot}(J) = J(J+1)/(2F)$ с моментом инерции $F = 0,0194 A^{5/3}$ ([19], с. 96, в единицах МэВ⁻¹). Значение параметра В в выражениях (2) и (3) вычислялось по модели Ферми-газа для сферического ядра $B^2 = F \cdot T$ (в безразмерных единицах) с температурой $T = \sqrt{\overline{U}/a}$ при средней энергии возбуждения $\overline{U} = (U_{\min} + U_{\max})/2$ и параметром плотности ядерных уровней $a = A/10 \text{ M} \cdot \text{B}^{-1}$.

Вероятности заселения $g_g(U,J,\pi)$, $g_m(U,J,\pi)$ вычислялись с помощью кода

EMPIRE 3.2 [20]. Этот код содержит и использует существующую базу данных библиотеки RIPL-3 [19] по энергиям низколежащих состояний и вероятностям у-переходов, что позволяет обойтись без использования так называемого решающего у-перехода метода Хьюзенга - Ванденбоша [16 - 18]. В предыдущей нашей работе [9] было показано, что расчет среднего значения углового момента осколков деления не сильно зависит от использованного при расчете вида радиационной силовой функции и плотности ядерных уровней. Поэтому при расчетах использовалось приближение модифицированного лоренциана (MLO1) для радиационной силовой функции и улучшенная обобщенная сверхтекучая модель (EGSM) для плотности ядерных уровней [19 -22]. Остальные входные параметры были тоже взяты по умолчанию кода EMPIRE 3.2.

В табл. 2 приведены, в качестве примера, параметры λ , μ распределений по угловым моментам (2) и (3) осколков ⁸⁴Br, ¹³¹Te, ¹³²Sb, ¹³²I, ¹³³Te, ¹³⁴I, ¹³⁵Xe фотоделения ядра ²³⁵U. Значения были получены подгонкой методом χ^2 теоретических величин изомерных отношений к экспериментальным значениям, приведенным в табл. 1.

Таблица 2. Значения параметров распределений угловых моментов в первичных осколках фотоделения ⁸⁴ Br, ¹³¹Te, ¹³²Sb, ¹³²I, ¹³³Te, ¹³⁴I, ¹³⁵Xe для ²³⁵U

(Jano)	Значения параметров				
лдро	В	λ	μ		
⁸⁴ Br	5,23	0,70(2)	-3,26(4)		
¹³¹ Te	6,51	0,07(4)	-1,1(5)		
¹³² Sb	6,50	0,004(24)	-0,04(45)		
¹³² I	6,63	-0,05(3)	1,4(8)		
¹³³ Te	6,55	0,25(12)	-0,5(2)		
¹³⁴ I	6,67	0,15(25)	-2,0(2)		
¹³⁵ Xe	6,72	1,13(5)	-5,11(5)		

П р и м е ч а н и е. В скобках указаны погрешности, которые соответствуют погрешностям измерений из табл.1. Цифры в скобках относятся к последним значащим цифрам средних значений.

Аналогично были вычислены и параметры распределений P(J) для фрагментов фотоделения ядер ²³⁷Np и ²³⁹Pu. После этого были вычислены средние угловые моменты \overline{J} первичных фрагментов. Для распределения вида (2) значения \overline{J} и их статистические погрешности приве-

дены в табл. 3 и на рис. 3. В табл. 3 цифрами в скобках после символов делящихся ядер указаны значения спинов компаунд-ядра, образующегося после поглощения (дипольного) тормозного излучения. Для распределения P(J) вида (3) результаты близки.

Таблица 3. Значения средних угловых мог	ентов осколков деления Ј в единицах ħ
---	---------------------------------------

Ядро	²³⁵ U (2,5; 3,5; 4,5)		²³⁷ Np(1,5; 2,5; 3,5)		²³⁹ Pu(0,5; 1,5)	
	18 МэВ	9,8 МэВ	18 МэВ	9,8 МэВ	18 МэВ	9,8 МэВ
⁸⁴ Br	1,8(5)	-	1,9(5)		1,7(5)	
⁹⁰ Rb	-	-	2,2(6)		1,8(6)	
¹³¹ Te	6,8(8)	-	5,8(7)	-	7,4(8)	7,4(8)
¹³² Sb	8,0(7)	5,6(5)	6,9(6)	-	8,1(6)	8,2(6)
¹³² I	9,6(9)	-	6,7(7)	-	5,2(6)	-
¹³³ Te	7,6(6)	5,7(6)	10,6(7)	10,6(7)	8,4(5)	8,4(5)
¹³⁴ I	5,6(6)	5,3(5)	-	5,6(6)	7,7(8)	7,7(8)
¹³⁵ Xe	1,4(5)	2,0(5)	1,2(5)	1,3(5)	1,4(5)	1,5(5)

П р и м е ч а н и е. В скобках за средними значениями указаны погрешности, которые соответствуют погрешностям измерений из табл. 1. Цифры в скобках относятся к последним значащим цифрам средних значений.

Рис. 3. Средние угловые моменты \overline{J} осколков фотоделения ядер ²³⁵U, ²³⁷Np и ²³⁹Pu тормозным излучением с граничной энергией $E_e = 18$ МэВ в зависимости от заряда осколка.

Отметим, что надежность использования обобщенной модели Хьюзенга - Ванденбоша для вычисления средних угловых моментов первичных фрагментов анализировалась в [9] (см. рис. 6). Было показано, что расчеты среднего углового момента по такой модели и статистическим подходам, которые учитывают вылет нейтронов, близки и в рамках погрешностей согласуются между собой. Таким образом, вылет нейтронов до γ-каскадов хотя и искажает начальное распределение угловых моментов в первичных фрагментах деления, но в целом не приводит к существенному изменению среднего значения углового момента. Отметим, что средний угловой момент, уносимый нейтронами, нами вычислен в квазиклассическом приближении в Приложении и его значение порядка ~ $1\hbar$. В табл. 3 и на рис. 3 погрешность \overline{J} указана без учета искажения первичного распределения угловых моментов за счет вылета нейтронов. В соответствии с расчетами в [9] при использовании кода EMPIRE учет такого эффекта может дополнительно изменить среднее значение углового момента на ~ 20 %, что согласуется с результатами работ [23, 24].

В целом можно сделать вывод, что средние угловые моменты тяжелых фрагментов деления примерно в 3 раза больше, чем средние угловые моменты легких осколков деления, и они значительно отличаются от значений спинов делящихся ядер. Последнее указывает на наличие дополнительного механизма формирования углового момента в тяжелых фрагментах. Регулярным исключением является ¹³⁵Хе, для которого средние угловые моменты как в реакции (γ , f), так и в реакциях (γ , f) + (γ , nf) составляют величины порядка ~ 1,5 \hbar . Это указывает на то, что в этом фрагменте дополнительный механизм формирования углового момента, по-видимому, отсутствует.

Отметим, что значение спина $J_m = 6$ изомерного состояния для фрагмента ⁸⁴Br определено недостаточно надежно. Поэтому в работе было проанализировано изменение вероятностей заселения γ -квантами основного и изомерного состояний, а также величины изомерного от изменения спина изомерного состояния ⁸⁴Br. В приведенных ниже расчетах, кроме наиболее вероятного значения $J_m = 6$ для изомерного уровня, использовалось и значение $J_m = 8$; состояние тоже считалось нечетным.

На рис. 4 представлены зависимости от энергии возбуждения и спина начальных состояний отношений заселенностей основного (Δ_g) и изомерного (Δ_m) уровней при изменении значения изомерного уровня с $J_m^- = 6^-$ на $J_m^- = 8^-$ в осколке⁸⁴Вг фотоделения ²³⁵U:

а

Рис. 4. Отношения заселенностей основного (Δ_g) и изомерного (Δ_m) уровней при изменении значения изомерного уровня с 6⁻ на 8⁻ в осколке ⁸⁴Вг фотоделения ²³⁵U как функции энергии возбуждения и спина начальных состояний.

Из рис. 4 видно, что изменение спина изомерного состояния на ~ 30 % (с 6 на 8) может привести к изменению вероятностей заселения основного и изомерного состояний на порядок. Однако в обоих случаях для фрагмента ⁸⁴Br можно подогнать экспериментальное значение изомерного

отношения. При этом значения среднего углового момента меняются на ~ 20 % (с $\overline{J} = 1,9$ при $J_m = 6$ до $\overline{J} = 2,3$ для $J_m = 8$) и в рамках погрешности согласуются между собой: $\overline{J} = 1,9 \pm 0,5 [J_m = 6]; \quad \overline{J} = 2,3 \pm 0,5 [J_m = 8].$

б

Приложение

Квазиклассическая оценка среднего углового момента, уносимого нейтронами

В квазиклассическом приближении непрерывных угловых моментов выражение для среднего углового момента (< l >), который уносят нейтроны, можно записать в виде

$$< l >= \int_0^{\varepsilon_{\max}} w(\varepsilon) \,\overline{l}(\varepsilon) d\varepsilon$$

Здесь $\overline{l}(\varepsilon)$ - средний момент, который уносит нейтрон с энергией ε ; $w(\varepsilon)$ - вероятность вылета нейтронов с энергией ε в единичный интервал энергии. Эти величины можно вычислить, если известен спектр вылетающих нейтронов $n(\varepsilon)$ и вероятность их распределения по угловым моментам p(l):

$$\overline{l}(\varepsilon) = \int_0^{l_{\max}(\varepsilon)} l p(l) dl, \ w(\varepsilon) = n(\varepsilon) \Big/ \int_0^{\varepsilon_{\max}} n(\varepsilon') \ d\varepsilon',$$

где $l_{\max}(\varepsilon) = kR = \sqrt{2m_n\varepsilon/\hbar^2} \cdot R$ - максимальный угловой момент уносимый нейтроном из ядра радиуса $R = r_0 A_F^{1/3}(\phi m)$ с массовым числом A_F . Используя аппроксимацию из работы [25] $p(l) = (2l/l_{\max}^2(\varepsilon)) \cdot \Theta(l_{\max} - l)$, имеем

$$l(\varepsilon) = (2/3)l_{\max}(\varepsilon)$$
.

Аппроксимируя спектр нейтронов формулой Максвелла [26, 27] $n(\varepsilon) = const \cdot \varepsilon^{1/2} exp(-\varepsilon/T_m)$ с эффективной температурой $T_m = \sqrt{U/a}$ в делящемся ядре с энергией возбуждения U и a = A/8, находим (при $\varepsilon_{max} >> T_m$)

$$< l> = rac{4}{3} \sqrt{rac{2m_n T_m}{\hbar^2 \pi}} R.$$

Энергию возбуждения можно оценить, используя информацию о средней множественности мгновенных нейтронов \overline{v} в реакциях фотопоглощения, как [26, 27]

$$U \cong (\overline{\nu} + 1) < S_n >,$$

где $\langle S_n \rangle$ - средняя энергия отделения нейтронов в фрагментах; $\langle S_n \rangle \cong S_{2n}/2$ [28] с S_{2n} для энергии отрыва пары нейтронов от делящегося ядра. Результаты расчетов $\langle l \rangle$ по этим формулам приведены в таблице. Были использованы следующие значения параметров: ²³⁵U($S_{2n} =$ = 12,146 МэВ, $\overline{v} = 3,2$), ²³⁷Np($S_{2n} = 12,311$ МэВ, $\overline{v} = 3,6$), ²³⁹Pu($S_{2n} = 12,653$ МэВ, $\overline{v} = 3,8$); $r_0 = 1,2$ фм. Значения средней множественности мгновенных нейтронов примерно соответствуют \overline{v} из библиотеки ENDF/B-VII [29] при средней энергии гамма-квантов $\langle E \rangle = 12$ МэВ.

Значения средних угловых моментов уносимых нейтронами из первичных осколков деления в единицах ħ

ano propriour	<l></l>				
лдро-фрагмент	²³⁵ U	²³⁷ Np	²³⁹ Pu		
⁸⁴ Br	0,84	0,86	0,88		
¹³¹ Te	0,98	1,00	1,02		
¹³² Sb	0,98	1,00	1,02		
132 I	0,98	1,00	1,02		
¹³³ Te	0,98	1,00	1,02		
134 I	0,98	1,01	1,02		
¹³⁵ Xe	0,99	1,01	1,03		

СПИСОК ЛИТЕРАТУРЫ

- 1. Vandenbosh R., Huizenga J.R. Nuclear Fission. Academic Press, 1973. 422 p.
- 2. *Wagermans C*. The Nuclear Fission Process. Ed., CRC Press, Boca Raton (EL), USA, 1995. 475 p.
- Ahmad I., Philips W.R. Gamma rays from fission fragments // Rep. Prog. Phys. - 1995. - Vol. 58. -P. 1415 - 1463.
- Тер-Акопян Г.М., Оганесян Ю.Ц. Даниель В.А. и др. Экспериментальные методы исследования спонтанного и низкоэнергетического деления // ЭЧАЯ. - 1997. - Т. 28. - С. 1357 - 1388.
- 5. Denisov V.Yu., Reshitko S.V. Mean angular momentum of nuclear-fission fragments // Phys. At. Nucl. -

1999. - Vol. 62. - P. 1806 - 1814.

- Mikhailov I.N., Quentin P., Briancon Ch. Angular momentum of fission fragments // Ядерная физика. -2001. - Т. 64. - С. 1185 - 1191.
- Вишневский И.Н., Желтоножский В.А., Давидовская О.И., Саврасов А.Н. Исследование фотоделения ²³²Th и ²³⁸U // Изв. РАН. Сер. физ. 2009. -Т. 73, № 6. - С. 782 - 785.
- Бесшейко О.А., Вишневский И.Н., Желтоножский В.А. и др. Изомерные отношения и средние угловые моменты для продуктов фотоделения ²³⁸U та ²³⁷Np // Изв. РАН. Сер. физ. - 2005. - Т. 69, № 5. -С. 658 - 662.

- 9. Vyshnevsky I.M, Zheltonozhskii V.O., Savrasov A.M. et al. Isomer yield ratios of ¹³³Te, ¹³⁴I, ¹³⁵Xe in photofission of ²³⁵U with 17 MeV bremsstrahlung // Ядерна фізика та енергетика. - 2014. - Т. 15, № 2. - С. 111 -118.
- Aumann D.C., Guckel W., Nirschl E., Zeising H. Independent isomeric yield ratio of ¹⁴⁸Pm in fission of the moderately excited ²³⁶U compound nucleus as a measure of fragment angular momentum // Phys. Rev. C. 1977. Vol. 16. P. 254 265.
- Jacobs E., Thierens H., De Frenne D. et al. Product yields for the photofission of ²³⁸U with 12-, 15-, 20-, 30-, and 70-Mev bremsstrahlung // Phys. Rev. C. -1979. - Vol. 19. - P. 422 - 432.
- Ford G.P., Wolfsberg K., Erdal B.R. Independent yields of the isomers of ¹³³Xe and ¹³⁵Xe for neutroninduced fission of ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴²Am^m// Phys. Rev. C. - 1984. - Vol. 30. - P.195 - 213.
- Vishnevsky I.N., Denisov V.Yu., Zheltonozhsky V.A. et al. Mean angular momenta of fragments from ²³²Th fission // Phys. At. Nucl. - 1998. - Vol. 61. - P. 1452 -1458.
- 14. Хоменков В.П. Исследование атомно-ядерных эффектов в процессе внутренней конверсии гаммалучей: автореф. дис. ... канд. физ.-мат. - К., 2003. -19 с.
- 15. Вишневский И.Н., Давидовская О.И., Желтоножский В.А., Саврасов А.Н. Исследование фотоделения ²³⁵U и ²³⁹Pu // Изв. РАН. Сер. физ. - 2010. -Т. 74, № 4. - С. 538 - 541.
- 16. Huizenga J.R., Vandenbosh R. Interpretation of Isomeric Cross-Section Ratios for (n, γ) and (γ, n) Reactions // Phys. Rev. - 1960. - Vol. 120. - P. 1305 - 1312.
- Vandenbosh R., Huizenga J.R. Isomeric Cross-Section Ratios for Reactions Producing the Isomeric Pair Hg^{197,197m} // Phys. Rev. - 1960. - Vol. 120. - P. 1313 -1318.
- Warhalek H., Vandenbosh R. Relative cross-sections for formation of the shielded isomeric pair ^{134m}Cs and ¹³⁴Cs in medium energy fission // J. Inorg. Nucl. Chem. - 1964. - Vol. 26. - P. 669 - 676.
- 19. Capote R., Herman M., Oblozinsky P. et al. Reference input Parameter Library (RIPL3) // Nuclear Data

Sheets. - 2009. - Vol. 110. - P. 3107 - 3214; http://www-nds.iaea.org/RIPL-3/.

- 20. Herman M., Capote R., Carlson B.V. et al., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation // Nuclear Data Sheets. - 2007. - Vol. 108. -P. 2655 - 2716; http://www.nndc.bnl.gov/empire/.
- 21. Plujko V.A., Gorbachenko O.M., Zheltonozhskii V.O., Rovenskykh E.P. Average Description of Dipole Gamma-Transitions in Hot Atomic Nuclei // Nuclear Data Sheets. - 2014. - Vol. 118. - P. 237 - 239.
- 22. Plujko V.A., Gorbachenko O.M., Bondar B.M., Rovenskykh E.P. Nuclear level density within extended superfluid model with collective state enhancement // Nuclear Data Sheets. - 2014. - Vol. 118. - P. 240 - 243.
- 23. Sarantities D.G., Gordon G.E., Coryell Ch. D., De Frenne D. et al. Ratios of independent yields of the isomers Te^{131-131m} and Te^{133-133m} in fission // Phys. Rev. - 1965. - Vol. 138. - P. B353 - B364.
- 24. Thierens H., De Frenne D., Jacobs E. et al. Product yields for the photofission of ²³⁵U and ²³⁸U with 25-Mev bremsstrahlung // Phys. Rev. C. - 1976. -Vol. 14. - P. 1058 - 1067.
- 25. *Alexander J.M., Simonoff G.N.* Excitation functions for ¹⁴⁹Tb from reactions between complex nuclei // Phys. Rev. 1963. Vol. 130. P. 2383 2387.
- 26. Terrell J. Fission Neutron Spectra and Nuclear Temperatures // Phys. Rev. 1959. Vol. 113. P. 527 541.
- 27. Madland D.G. Theory of neutron emission in fission // Proc. Workshop on Nuclear Reaction Data and Nuclear Reactors, ICTP (Trieste, Italy, 23 Feb. - 27 Mar., 1998) / Eds. P. Oblozinsky, A. Gandini. - Singapore: World Scientific, 1999. - P. 46 - 67.
- 28. *Schmidt K.-H., Jurado B.* Description of the fission probability with the GEF code // JEF/DOC 1423, OECD-NEA, Paris, 2012. 15 p. (www.khs-erzhausen.de).
- 29. Chadwick M.B., Oblozinsky P., Herman M. et al. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology // Nuclear Data Sheets. - 2006. - Vol. 107. - P. 2931 -3060.

I. М. Вишневський¹, В. О. Желтоножський¹, В. А. Плюйко², А. М. Саврасов¹, О. М. Горбаченко², О. І. Давидовська¹, Е. П. Ровенських²

¹ Інститут ядерних досліджень НАН України, Київ ² Київський національний університет імені Тараса Шевченка, Київ

ІЗОМЕРНІ ВІДНОШЕННЯ ТА СЕРЕДНІ КУТОВІ МОМЕНТИ ФРАГМЕНТІВ ФОТОПОДІЛУ ²³⁵U, ²³⁷ Np TA ²³⁹Pu

Досліджено ізомерні відношення виходів фрагментів фотоподілу ядер ²³⁵U, ²³⁷Np та ²³⁹Pu гальмівними γ -квантами з максимальною енергією 18 MeB. Отримано нові дані з виходів ізомерних пар ядер ⁸⁴Br, ⁹⁰Rb, ¹³¹Te, ¹³²Sb, ¹³²I, ¹³³Te, ¹³⁴I, ¹³⁵Xe. Ізомерні відношення отримано з відніманням внеску від заселення станів досліджуваних фрагментів від β -розпаду відповідних ізобарних ядер. Визначено середні кутові моменти фрагментів поділу в рамках узагальненої статистичної моделі Хьюзенга - Ванденбоша з використанням коду EMPIRE 3.2.

Ключові слова: фотоподіл, метод ізомерних відношень, середні кутові моменти продуктів поділу.

I. M. Vyshnevskyi¹, V. O. Zheltonozhskyi¹, V. A. Plujko², A. M. Savrasov¹, O. M. Gorbachenko², O. I. Davydovska¹, E. P. Rovenskykh²

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv ² Taras Shevchenko National University, Kyiv

ISOMERIC YIELD RATIOS AND MEAN ANGULAR MOMENTA OF PHOTOFISSION FRAGMENTS OF ²³⁵U, ²³⁷ Np AND ²³⁹Pu

Isomeric yield ratios for the fragments of photofission 235 U, 237 Np and 239 Pu by bremsstrahlung with end-point energy of 18 MeV are measured. New data for isomeric yield ratios of the fragments 84 Se, 90 Br, 131 Te, 132 Sb, 132 I, 133 Te, 134 I, 135 Xe are determined. The contributions to the isomeric yield ratios from β -decay of the nuclei of parent isobaric chain were removed. Mean angular momenta of studied nuclei are estimated within the framework of an extended Huizenga - Vandenbosh statistical model with using EMPIRE 3.2 code.

Keywords: photofission, isomeric ratios method, average angular momenta of fission products.

REFERENCES

- 1. Vandenbosh R., Huizenga J.R. Nuclear Fission. Academic Press, 1973. 422 p.
- 2. *Wagermans C.* The Nuclear Fission Process. Ed., CRC Press, Boca Raton (EL), USA, 1995. 475 p.
- Ahmad I., Philips W.R. Gamma rays from fission fragments // Rep. Prog. Phys. - 1995. - Vol. 58. -P. 1415 - 1463.
- Ter-Akopyan G.M., Oganesyan Yu.Ts. Daniel' V.A. et al. // EChAYa. - 1997. - Vol. 28. - P. 1357 - 1388. (Rus)
- Denisov V.Yu., Reshitko S.V. Mean angular momentum of nuclear-fission fragments // Phys. At. Nucl. -1999. - Vol. 62. - P. 1806 - 1814.
- Mikhailov I.N., Quentin P., Briancon Ch. Angular momentum of fission fragments // Ядерная физика. -2001. - Т. 64. - С. 1185 - 1191.
- Vishnevskij I.N., Zheltonozhskij V.A., Davidovskaya O.I., Savrasov A.N. // Izv. RAN. Ser. fiz. - 2009. -Vol. 73, No. 6. - P. 782 - 785. (Rus)
- Besshejko O.A., Vishnevskij I.N., Zheltonozhskij V.A. et al. // Izv. RAN. Ser. fiz. - 2005. - Vol. 69, No. 5. -P. 658 - 662. (Rus)
- 9. Vyshnevsky I.M, Zheltonozhskii V.O., Savrasov A.M. et al. Isomer yield ratios of ¹³³Te, ¹³⁴I, ¹³⁵Xe in photofission of ²³⁵U with 17 MeV bremsstrahlung // Ядерна фізика та енергетика. - 2014. - Т. 15, № 2. - С. 111 -118.
- 10. Aumann D.C., Guckel W., Nirschl E., Zeising H. Independent isomeric yield ratio of ¹⁴⁸Pm in fission of the moderately excited ²³⁶U compound nucleus as a measure of fragment angular momentum // Phys. Rev. C. -1977. - Vol. 16. - P. 254 - 265.
- Jacobs E., Thierens H., De Frenne D. et al. Product yields for the photofission of ²³⁸U with 12-, 15-, 20-, 30-, and 70-Mev bremsstrahlung // Phys. Rev. C. -1979. - Vol. 19. - P. 422 - 432.
- 12. Ford G.P., Wolfsberg K., Erdal B.R. Independent yields of the isomers of ¹³³Xe and ¹³⁵Xe for neutroninduced fission of ²³³U, ²³⁵U, ²³⁹Pu, and ²⁴²Am^m//

Phys. Rev. C. - 1984. - Vol. 30. - P.195 - 213.

- Vishnevsky I.N., Denisov V.Yu., Zheltonozhsky V.A. et al. Mean angular momenta of fragments from ²³²Th fission // Phys. At. Nucl. - 1998. - Vol. 61. - P. 1452 -1458.
- 14. *Khomenkov V.P.* Atomic-nuclear effects research in the process of internal conversion of gamma rays: Thesis Ph. D. abstract. Kyiv., 2003. 19 p. (Rus)
- Vishnevskij I.N., Davidovskaya O.I., Zheltonozhskij V.A., Savrasov A.N. // Izv. RAN. Ser. fiz. - 2010. -Vol. 74, No. 4. - P. 538 - 541. (Rus)
- 16. Huizenga J.R., Vandenbosh R. Interpretation of Isomeric Cross-Section Ratios for (n, γ) and (γ, n) Reactions // Phys. Rev. - 1960. - Vol. 120. - P. 1305 - 1312.
- Vandenbosh R., Huizenga J.R. Isomeric Cross-Section Ratios for Reactions Producing the Isomeric Pair Hg^{197,197m} // Phys. Rev. - 1960. - Vol. 120. - P. 1313 -1318.
- Warhalek H., Vandenbosh R. Relative cross-sections for formation of the shielded isomeric pair ^{134m}Cs and ¹³⁴Cs in medium energy fission // J. Inorg. Nucl. Chem. - 1964. - Vol. 26. - P. 669 - 676.
- Capote R., Herman M., Oblozinsky P. et al. Reference input Parameter Library (RIPL3) // Nuclear Data Sheets. - 2009. - Vol. 110. - P. 3107 - 3214; http://www-nds.iaea.org/RIPL-3/.
- 20. Herman M., Capote R., Carlson B.V. et al., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation // Nuclear Data Sheets. - 2007. - Vol. 108. -P. 2655 - 2716; http://www.nndc.bnl.gov/empire/.
- 21. Plujko V.A., Gorbachenko O.M., Zheltonozhskii V.O., Rovenskykh E.P. Average Description of Dipole Gamma-Transitions in Hot Atomic Nuclei // Nuclear Data Sheets. - 2014. - Vol. 118. - P. 237 - 239.
- 22. Plujko V.A., Gorbachenko O.M., Bondar B.M., Rovenskykh E.P. Nuclear level density within extended superfluid model with collective state enhancement // Nuclear Data Sheets. - 2014. - Vol. 118. - P. 240 - 243.
- 23. Sarantities D.G., Gordon G.E., Coryell Ch. D., De

Frenne D. et al. Ratios of independent yields of the isomers $Te^{131-131m}$ and $Te^{133-133m}$ in fission // Phys. Rev. - 1965. - Vol. 138. - P. B353 - B364.

- 24. Thierens H., De Frenne D., Jacobs E. et al. Product yields for the photofission of ²³⁵U and ²³⁸U with 25-Mev bremsstrahlung // Phys. Rev. C. - 1976. -Vol. 14. - P. 1058 - 1067.
- 25. Alexander J.M., Simonoff G.N. Excitation functions for ¹⁴⁹Tb from reactions between complex nuclei // Phys. Rev. - 1963. - Vol. 130. - P. 2383 - 2387.
- Terrell J. Fission Neutron Spectra and Nuclear Temperatures // Phys. Rev. - 1959. - Vol. 113. - P. 527 - 541.
- 27. Madland D.G. Theory of neutron emission in fission //

Proc. Workshop on Nuclear Reaction Data and Nuclear Reactors, ICTP (Trieste, Italy, 23 Feb. - 27 Mar., 1998) / Eds. P. Oblozinsky, A. Gandini. - Singapore: World Scientific, 1999. - P. 46 - 67.

- 28. *Schmidt K.-H., Jurado B.* Description of the fission probability with the GEF code // JEF/DOC 1423, OECD-NEA, Paris, 2012. 15 p. (www.khs-erzhausen.de).
- 29. Chadwick M.B., Oblozinsky P., Herman M. et al. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology // Nuclear Data Sheets. - 2006. - Vol. 107. - P. 2931 -3060.

Надійшла 22.01.2015 Received 22.01.2015