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APPLICATION OF THE EQUIVALENT RADIATOR METHOD
FOR RADIATIVE CORRECTIONS TO THE SPECTRA
OF ELASTIC ELECTRON SCATTERING BY NUCLEI

For calculating the radiative tails in the spectra of inelastic electron scattering by nuclei, the approximation, namely,
the equivalent radiator method (ERM), is used. However, the applicability of this method for evaluating the radiative
tail from the elastic scattering peak has been little investigated, and therefore, it has become the subject of the present
study for the case of light nuclei. As a result, spectral regions were found, where a significant discrepancy between the
ERM calculation and the exact-formula calculation was observed. A link was established between this phenomenon and
the diffraction minimum of the squared form-factor of the nuclear ground state. Varieties of calculations were carried
out for different kinematics of electron scattering by nuclei. The analysis of the calculation results has shown the condi-
tions, at which the equivalent radiator method can be applied for adequately evaluating the radiative tail of the elastic

scattering peak.

Keywords: electron scattering, radiative corrections, elastic equivalent radiator method, diffraction minimum of

form-factor.
Introduction

The experimental spectra of electrons scattered
by nuclei are distorted by a variety of physical ef-
fects, among which we mention the radiation losses
manifested in all the measurements. The currently
adopted method of estimation of this effect (subse-
quently referred to as the radiative correction to the
spectrum) has been described in references [1 - 4].

Of all the operations that the radiative correction
includes, the calculation of radiative tails from the
peaks and differential cross sections of the continu-
um spectrum is the most complicated. For calcula-
tion simplicity, several approximation techniques
have been developed [1, 5 - 7], one of them being
the equivalent radiator method (ERM) [1]. This
method is considered to be a good alternative to ex-
act calculations (see refs. [4, 8, 9]), and it is com-
monly used in the radiative correction to inelastic
scattering spectra.

In papers [1, 8], and in the recent work [9] fo-
cused on the treatment of JLab measurements [10], it
was proposed to use the ERM for evaluating the ra-
diative tail from the elastic scattering peak. The pro-
posal was based on the results of comparison be-
tween the ERM calculations of the radiative tail and
its calculations by exact equations. The comparison
was given in refs. [1, 8] for electron scattering by ‘H
nuclei at the angles 6 = 5° and 14°, and also, for one
spectrum of scattering by *2C nuclei at 6 = 14° and at
initial electron energy Es = 800 MeV [8].

The undertaken verifications of the ERM approx-
imation seem insufficient, because they were carried
out only at small scattering angles, and in the

12C case — only for one E value. Besides, considera-
tion was given to scattering by two nuclei, of which
'H is a peculiar nucleus, and its characteristics are
not typical of other nuclei.

The present paper deals with the applicability of
the ERM approximation for calculating the radiative
tail from the elastic scattering peak.

The equivalent radiator method

The differential radiative tail cross-section
doy ., (E, E, T)
dQ-dE,
and the target of thickness T can be represented as
doy ., (Eo E, T)

dQ-dE,

for scattered electron energies Ep

_ doy, (E,.E,.T) . daovr(Es,Ep).

1)
dQ-dE, dQ-dE,

do,, (E,.E,.T)
dQ-dE,
so-called external energy losses occurring as the
electron passes through the target substance. These

are the bremsstrahlung losses and the atomic ioniza-
tion losses on the electron trajectory in the target.

do,, (E..E,)
dQ-dE

p
the energy decrease due to photon emission by the

Here the first term describes the

The second term takes into account
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electron during its scattering by the nucleus. These
losses are usually called internal. The equation for
exact calculation of internal losses is very cumber-
some, and its solution calls for the data measured at
lower initial electron energies (see Eq. (B5) in ref.
[2]. p. 230; or EqQ. (A24) in ref. [4], p. 1914). To
avoid solving this equation, the ERM approach as-
sumes that the internal bremsstrahlung is equivalent
to the bremsstrahlung in two radiators, each of
thickness t;, arranged on the path of the electron be-
fore and after the scattering event. In this case, the
expression for the radiative tail takes on the form

doy,, (E,.E,. T +2t,)
dQ-dE,

——(E,E,T)= )

a Q? . .
Here t, =—| In=-1| is the thickness of the
b m

equivalent radiator, Q” =4-E,-E_ -sin’(8/2)is the

transfer four-momentum; m is the mass of the elec-
tron; b is the quantity, which is weakly dependent on
the target material performance and is taken to a
good accuracy to be b =4/3. As mentioned in the
Introduction, the results of ERM calculations and the
calculations by exact equations for the *H and *2C
nuclei were published in refs. [1, 8]. To verify our
computational programs, we have repeated those
calculations and obtained coincidence in four man-
tissa signs with the calculation data of refs. [1, 8].
For convenience in comparison between the ERM
calculations (Rerm) and the exact-equation calcula-
tions of ref. [2] (R), we have used the function
U(Ep) = (Rerm(Ep)/R(Ep) - 1) - 100, which shows the
percentage divergence between these calculations.

The effect of the diffraction minimum
of nuclear form-factor on the ERM calculation

Fig. 1, a shows the functions U(E;) calculated for
the radiative tails of peaks of elastic scattering by the
'H and “He nuclei at the energies Es = 260 MeV,
100 MeV; the scattering angle 6 = 60° and the target
thicknesses T = 0.2 % radiative length'. As is obvi-
ous from the figure, in the case of 'H, the functions
U(Ep) increase monotonically with a decreasing Ej,
but in the case of Es = 1000 MeV the function U(E;)
of the *He nucleus has a deep minimum at E, =
600 MeV (we shall denote the Ep values correspond-
ing to the minimum as E, m). This strong difference
between the functions under consideration should be
due to the difference in some of the characteristics of
the nuclei. This characteristic must be present in the

L All further calculations were carried out for the tar-
gets of this thickness and by using equations of Ref. [2].
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Fig. 1. Calculated U(E,) for the nuclei H, *He, Li and
2C at the scattering angle 0 = 60° and target thicknesses
T=0.2 % rad. length. The arrows show the initial elec-
tron energies in MeV units. a — solid lines — *H; dashed
lines — “He; b — solid and dotted lines represent the cal-
culations for 7Li with the full form-factor and only with
the charge form-factor, respectively; the dashed curves
are for 2C.

radiative tail calculations and be different for the *H
and “He nuclei at Q > 1 fm™, but not at Q = 1 fm™,
where according to the calculation for Es=260 MeV,
the functions U(E;) of the both nuclei considered are
similar to each other. The only nuclear characteristic
that corresponds to the mentioned requirements is
the squared form-factor of the nuclear ground state
Fe?(Q) (hereafter, more simply the form-factor). So,
the function Fe*(Q) of the 'H nucleus decreases
monotonically with increasing Q at all its values. As
for the case of the “He nucleus, at Q = 3.15 fm™, its
form-factor has the diffraction minimum (Fig. 2).
Further on, the transfer momentum corresponding to
the first diffraction minimum of the form-factor will
be denoted as Qm, 1. To verify the found relationship
between the minima of the functions U(E,) and
Fe?(Q), we consider the behavior of U(E,) for the
"Li and 'C nuclei. Owing to the peculiarities of
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Fig. 2. Squared ground-state form factors of 'H, “He, "Li
and *2C (solid lines). In the case of *H and "Li nuclei, the
form-factors were calculated for 6 = 60°. The dotted line
shows the charge form-factor of the “Li nucleus.

charge density distribution in the ‘Li nucleus, its
form-factor has no diffraction minimum at
Q < 2.7 fm™, while at the given transfer momenta we
have a well-marked minimum in the form-factor of
the 2C nucleus (see Fig. 2). So, in the nature of the
functions F¢(Q), the pair of ‘Li and *2C nuclei is
similar to the pair of *H and *He. The calculation of
U(E,) for Li and **C is given in Fig. 1, b. It can be
seen that the function U(E,) of the Li nucleus has
no minimum, while in the **C case the function
U(E,) shows the minimum at E, » = 360 MeV. In
other words, Fig. 1, b for U(E;) of the nuclei "Li, **C
is similar to Fig. 1, a for U(E;) of the nuclei H, *He,
and this is in agreement with the above-said assump-
tion about the reason for minimum appearance in the
function U(Ep).

The emergence of the diffraction minimum of the
form-factor in the function U(E,) can be attributed to
the fact that the form-factor is differently involved in
the exact-formula/ERM calculations of the radiative
tail. Thus in the exact calculation, the form-factor is
averaged over some range of transfer momenta, and
this smoothes the calculated function of the radiative
tail, while in the ERM approach the form-factor en-
ters into the calculation as a multiplying factor. So,
the difference between the two calculations is the
more, the greater is the second derived function of
the form-factor, in other words, at Q’s somewhat
lower than in the diffraction minimum and in the
minimum itself.

It should be noted that the equation for the radia-
tive tail of the elastic scattering peak includes the con-
tributions of both the longitudinal and transverse
form-factors. The contribution from the transverse
form-factor is absent in the form-factors of the *He
and *2C nuclei. It can be assumed that the minima in
the functions U(Ep) of these nuclei are due to the

absence of the transverse form-factor contribution in
them. For checking this assumption, we have calcu-
lated the function U(E,) of the ‘Li nucleus with the
form-factor, whereof the transverse form-factor con-
tribution was excluded. That is, the calculation was
done only for the charge form-factor of this nucleus,
as is the case with *He and *2C nuclei. It can be seen
in Fig. 1, b that the function U(E,) calculated in this
way is little different from the function having the
contribution from the transverse form-factor. From
this it can be concluded that there is no connection
between the transverse form-factor of the nucleus and
the clearly marked minimum in the function U(Ey).

The practical consequence of revealing the min-
imum in the function U(Ep) is the fact that this min-
imum restricts the energy range (E;) that permits the
usage of the ERM approximation (Fig. 3). For a
more detailed consideration of the conditions for the
appearance of this restriction, a number of calcula-
tions were performed.
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Fig. 3. Functions U(Ep) of the nuclei “He (solid lines)
and '?C (dashed lines) at 0 = 60° for different initial
energies Es of MeV values indicated by arrows. The
dotted lines show AU = +£5.

The minima of functions U(Ep)
at different calculation conditions

The calculations of the functions U(E,) for dif-
ferent kinematic conditions of elastic electron scat-
tering by nuclei must show the restrictions on the
applicability of the ERM. Carrying-out of these cal-
culations for a few nuclei may point to common
properties and differences of the functions U(Ep),
which are typical of these nuclei, and thus may be
helpful in generalizing the ERM applicability condi-
tions for some group of nuclei.

Fig. 3 shows the calculated functions U(Ep) for
the nuclei “He and *2C at a fixed scattering angle and
at different initial energies. Fig. 4 gives the calcula-
ted functions U(E,) for the **C nucleus at different 0
angles. It is evident from the figures that:
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Fig. 4. Functions U(E;) of the nucleus *C at different
scattering angles 0. The functions U(E;) corresponding
to the same 0 value but to different energies Es are
shown by the same-type lines. For U(E;) at 6 = 60° the
energy Es values are indicated by arrows.

1) for the given nucleus and a fixed scattering an-
gle, the position of the minimum of the function
U(Ep) with respect to the scattered electron energy
(Ep. 1), is almost independent of the initial energies Es;

2) with decrease in the energy Es, the depth of the
minimum of the function U(E,) decreases and be-
comes close to zero at Es = Ep, m;

3) the Ep,1 value increases with a decrease in the
scattering angle 6.

Fig. 5 shows Ep 1 as a function of 0, along with
its calculation by the empirical formula

Epm=Qn,-100/sin(6/2)+A, 3

Ep. m, MeV
1000

800
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Fig. 5. Scattered electron energies Ep 1 versus 0. The
energies E,, 1 correspond to the minimum of the function
U(Ep) for the nuclei *He (points), 12C (circles), 6O (tri-
angles), “°Ca (sidelong crosses). The solid lines repre-
sent the calculation by formula (3). Straight crosses
show the Eg, ; values of 4°Ca, related to the second mini-
mum of the form-factor. The corresponding calculation
is shown by the dashed line.
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where the four-momentum Qp, 1 is in units of fm™, A
is the parameter invariable for each given nucleus
and amounting to several MeV. For plotting the
curves in Fig. 5, the A value was taken as zero.

With substitution of appropriate Qm,1 Vvalues,
formula (3) can be also used for higher differential
minima of the nuclear ground-state form-factor. As
an example, Fig. 5 shows the E; » values for the min-
imum of the function U(E;) related to the second
diffraction minimum of “°Ca nuclear form-factor.
Alongside, the same figure illustrates E; » as a func-
tion of 0, calculated by formula (3), where the
momentum Qm 1 was replaced by the momentum
Qm,2=2.02 fm™.

We put the acceptable deviation of the ERM cal-
culation from the exact-formula calculation to equal
5%, that is, when]| U(Ep)| <5, and denote
|U(Ep)| =5 as AU. The experimental spectrum
begins from the elastic peak energy Ee, where
U(Ep) = 0. With a decrease in the scattered electron
energy, the |U| value increases, and at a certain
Ep, u it reaches the AU value. We denote the spectral
region, where the ERM is applicable for calculating
the radiative tail of the elastic scattering peak, by
Emax = Eel — Ep, u-

From Figs. 1, 3, 4 it is evident that in some cases
the Ep  value determines the drop of the function
U(Ep) to the minimum, and in the other cases, it
specifies a small rise of the function on the high-
energy side.

At the energies Es < Ep m, the Ep , value is deter-
mined by the growth rate of the function U(Ep) as E,
decreases (see Fig. 1). The calculated data on &max
for the nuclei “He, *?C, %0, “°Ca at 6 = 40° + 80°
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Fig. 6. The nuclear excitation energy €max, Up to which the
ERM-calculated rad. tail of the elastic scattering peak
differs within 5 % from the rad. tail value calculated by
exact equations. The calculation is made for the scattering
angles 6 = 40° + 80°. The notation of the nuclei, for which
the emax Were found, is the same as in Fig. 5.
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have shown (Fig.6) that up to 600 MeV
(Q <3.8 fm™), we have emxx = 40 MeV. With a de-
crease in the angle 6, the emax Values become to vary
greatly and fail to be systematized. The increase
in the angle 0 reduces the emax value down to
emax < 16 MeV at 6 = 120°.

Conclusions

Consideration has been given to the possibility of
calculating the radiative tail of the elastic scattering
peak using the equivalent radiator method.

In some spectral regions, the analysis has re-
vealed great differences between the ERM calcula-
tions and the calculations by exact formulae.

Links have been established between the spec-
trum regions, where the ERM calculation appears
invalid, and the diffraction minima of the nuclear
ground-state form-factors.

The excitation energies emax, Up to which the
ERM is applicable, have been determined for the
nuclei “He, C, **0, “°Ca.

The ERM calculations for various nuclei at dif-
ferent scattering angles and initial electron energies
just led to finding out a few regularities in the devia-
tion of the ERM calculations from the exact-formula
calculations. These regularities have enabled us to
extend the results obtained to a group of light nuclei
(A <40).

The practical outcome of the present work lies in
the determination of the conditions, at which the
ERM approximation can be applied for calculating
the radiative tail of the elastic scattering peak. Ac-
cording to the analysis results, the ERM calculation
of the radiative tail of the elastic scattering peak can
be used in the studies of excited states of light nuclei
at electron scattering angles 6 = 40° + 80° up to
excitation energies of 40 MeV. As for the studies of
quasielastic electron scattering and electroproduc-
tion processes, the ERM approximation for calculat-
ing the radiative tail of the elastic scattering peak
does not appear sufficiently exact.
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I. C. Timuenko, O. 10. Bykn

Hayionanvuuii naykosuii yenmp «Xapxiecokuti Qisuxo-mexHiunuil incmumympy,
Incmumym izuxu gucokux enepeiii ma soepuoi gizuxu, Xapxie

BUKOPUCTAHHSI METOJTY EKBIBAJIEHTHOT'O PAJITIATOPA
TUISA PATITALIIIAHOTO KOPET'YBAHHSI CIIEKTPIB
MPYKHOT'O PO3CISIHHSA EJIEKTPOHIB HA SIIPAX

VY npouenypi pamianiifHOro KOperyBaHHs CIIEKTPIB HEMIPYKHOTO PO3CISIHHS SJIEKTPOHIB HA sApaxX Uil PO3PaxyHKY
pamialifHIX XBOCTIB BUKOPHCTOBYEThCS HAONMKEHUH METOJ] — METO €KBIiBaJICHTHOTO pagiaropa. OmXHAK MOXKIUBICT
BHKOPHCTAHHA IIHOTO METOIY IJISl OI[IHKH pamialliifHOro XBOCTA IiKa MPY>KHOTO PO3CiSHHS Oyiia Majio JOCHiHKEeHa i B
JaHii poOOTI BUBYAETHCA HA IPUKITAJI JIETKHX siep. Sk pe3ynbTar, Oyiio 3HalIeHO O0JIACTI CIIEKTpa, A€ PO3PaxXyHKH 32
METOJIOM €KBIBaJICHTHOTO pajiaTopa Ta TOYHOIO (hOpMYJIOI0 3HAYHO PO3XOIATHCA. Bylio BCTaHOBIEHO 3B A30K MiXK UM
(enomeHoM 1 audpakuiitanM MiHIMyMOM KBazaparta GopmMdakropa OCHOBHOTO cTaHy szapa. IIpoeneHo psa po3paxyH-

213


http://digital.library.temple.edu/%20cdm/ref/collection/p245801coll10/id/152421
http://digital.library.temple.edu/%20cdm/ref/collection/p245801coll10/id/152421
http://hallaweb.jlab.org/experiment/E05-110/exp_home/
http://hallaweb.jlab.org/experiment/E05-110/exp_home/

I.S. TIMCHENKO, A. YU. BUKI

KiB A7 Pi3HUX KiHEMaTHYHUX YMOB PO3CISHHS €IEKTPOHIB Ha SIpax, a 3 aHaJi3y pe3yibTaTiB OyJI0 BU3HAYEHO YMOBH,
3a SIKHX METOJ €KBiBAIEHTHOTO pajiaTopa MOXe OyTH BUKOPHCTAHO IS aA€KBATHOI OLIHKU pajialliifHOro XBocTa s
niKa npy>KHOTO PO3CIsTHHSI.

Kniouosi cnoea: po3ciroBaHHs €l1€KTPOHIB, pajialliifiHi HONPaBKH, METOJI €KBIBAJIEHTHOTO pajiaTopa, TU(paKiiHui
MiHiMyM dopmbakTopa.

. C. Tumuenko, A. 10. Bykn

Hayuonanenutii nayunsiii yenmp «XapbKo8CKull (PU3UKO-MeXHU4eCKUL UHCTRUNLYM »,
Hucmumym ¢husuxu evicoxux snepauii u s0epHou gusuxu, Xapbkos

INPUMEHEHHUE METOJA SKBUBAJIEHTHOI'O PAIIUATOPA
JIJISI PATUALIMOHHOM KOPPEKTUPOBKHU CIIEKTPOB
YHPYT'OI'O PACCESAHUSA DJIEKTPOHOB HA SA/IPAX

B paananmoHHON KOPPEKTHPOBKE CIIEKTPOB HEYIPYTOrO pacCestHUS JIEKTPOHOB Ha s/Ipax AJIs pacueTa paafalioH-
HBIX XBOCTOB BMECTO TOYHOTO, HO TPYAOEMKOT'0O pacdeTa MPUMEHEeTCs MPUOIMKEHHBIH METO SKBHBAJICHTHOI'O paia-
Topa. B Hacrosmei paboTe paccMaTpUBaeTCsi BO3MOXKHOCTD IPHUMEHEHHUS 3TOTO METOJa JUI pacyeTa paIfaliOHHOTO
XBOCTa OT IIMKa YHPYroro paccesHus. B mporecce nccinemoBaHus 0OHApYKEHBI YUaCTKH CHEKTPa PacCesHHBIX JJIEK-
TPOHOB, Ha KOTOPBIX HAOMIOaeTcs OOJIbIIOE PACXOXKICHHE PACUETOB TOYHOTO M 110 METOIY SKBHBAJICHTHOI'O PaJHaTo-
pa M YyCTaHOBJICHA CBSI3b ITOTO PACXOXKICHUS ¢ NU(PAKIMOHHBIMH MHHUMYMaMH KBajapaTa (popMQakTopa OCHOBHOTO
cocTostHus siapa. VI3 aHanu3a pe3ynnbTaToB psijia pacueToB ONpPEeNIeHbl YCIOBUS, IPH KOTOPHIX MOXKHO ITPUMEHSTh Me-
TOJ] SKBUBAJICHTHOTO PaJHaTopa JUIs pacueTa paJuallMOHHBIX XBOCTOB OT ITMKOB YIIPYrOro pacCesiHUs JIEKTPOHOB Ha
JIETKUX SIIpax.

Kniouegvie crosa: paccessHue SIIEKTPOHOB, paJUalliOHHbIE ITONPAaBKH, METO/ KBHBAIEHTHOTO paauaropa, Judpak-
LUOHHBIAH MUHUMYM (hopmpakTopa.

Hamiiiima 20.04.2015
Received 20.04.2015

214



