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FOR RADIATIVE CORRECTIONS TO THE SPECTRA 

OF ELASTIC ELECTRON SCATTERING BY NUCLEI 
 

For calculating the radiative tails in the spectra of inelastic electron scattering by nuclei, the approximation, namely, 

the equivalent radiator method (ERM), is used. However, the applicability of this method for evaluating the radiative 

tail from the elastic scattering peak has been little investigated, and therefore, it has become the subject of the present 

study for the case of light nuclei. As a result, spectral regions were found, where a significant discrepancy between the 

ERM calculation and the exact-formula calculation was observed. A link was established between this phenomenon and 

the diffraction minimum of the squared form-factor of the nuclear ground state. Varieties of calculations were carried 

out for different kinematics of electron scattering by nuclei. The analysis of the calculation results has shown the condi-

tions, at which the equivalent radiator method can be applied for adequately evaluating the radiative tail of the elastic 

scattering peak.  

Keywords: electron scattering, radiative corrections, elastic equivalent radiator method, diffraction minimum of 

form-factor. 
 

Introduction 
 

The experimental spectra of electrons scattered 

by nuclei are distorted by a variety of physical ef-

fects, among which we mention the radiation losses 

manifested in all the measurements. The currently 

adopted method of estimation of this effect (subse-

quently referred to as the radiative correction to the 

spectrum) has been described in references [1 - 4].  

Of all the operations that the radiative correction 

includes, the calculation of radiative tails from the 

peaks and differential cross sections of the continu-

um spectrum is the most complicated. For calcula-

tion simplicity, several approximation techniques 

have been developed [1, 5 - 7], one of them being 

the equivalent radiator method (ERM) [1]. This 

method is considered to be a good alternative to ex-

act calculations (see refs. [4, 8, 9]), and it is com-

monly used in the radiative correction to inelastic 

scattering spectra.  

In papers [1, 8], and in the recent work [9] fo-

cused on the treatment of JLab measurements [10], it 

was proposed to use the ERM for evaluating the ra-

diative tail from the elastic scattering peak. The pro-

posal was based on the results of comparison be-

tween the ERM calculations of the radiative tail and 

its calculations by exact equations. The comparison 

was given in refs. [1, 8] for electron scattering by 1H 

nuclei at the angles θ = 5° and 14°, and also, for one 

spectrum of scattering by 12C nuclei at θ = 14° and at 

initial electron energy Es = 800 MeV [8]. 

The undertaken verifications of the ERM approx-

imation seem insufficient, because they were carried 

out only at small scattering angles, and in the 

12C case – only for one Es value. Besides, considera-

tion was given to scattering by two nuclei, of which 
1H is a peculiar nucleus, and its characteristics are 

not typical of other nuclei.  

The present paper deals with the applicability of 

the ERM approximation for calculating the radiative 

tail from the elastic scattering peak.  
 

The equivalent radiator method 
 

The differential radiative tail cross-section 
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Here the first term 
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 describes the 

so-called external energy losses occurring as the 

electron passes through the target substance. These 

are the bremsstrahlung losses and the atomic ioniza-

tion losses on the electron trajectory in the target. 

The second term 
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takes into account 

the energy decrease due to photon emission by the  
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electron during its scattering by the nucleus. These 

losses are usually called internal. The equation for 

exact calculation of internal losses is very cumber-

some, and its solution calls for the data measured at 

lower initial electron energies (see Eq. (B5) in ref. 

[2]. p. 230; or Eq. (A24) in ref. [4], p. 1914). To 

avoid solving this equation, the ERM approach as-

sumes that the internal bremsstrahlung is equivalent 

to the bremsstrahlung in two radiators, each of 

thickness tr, arranged on the path of the electron be-

fore and after the scattering event. In this case, the 

expression for the radiative tail takes on the form 
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 is the thickness of the 

equivalent radiator,  2 24 sin / 2s pQ E E     is the 

transfer four-momentum; m is the mass of the elec-

tron; b is the quantity, which is weakly dependent on 

the target material performance and is taken to a 

good accuracy to be b ≈ 4/3. As mentioned in the 

Introduction, the results of ERM calculations and the 

calculations by exact equations for the 1H and 12C 

nuclei were published in refs. [1, 8]. To verify our 

computational programs, we have repeated those 

calculations and obtained coincidence in four man-

tissa signs with the calculation data of refs. [1, 8]. 

For convenience in comparison between the ERM 

calculations (RERM) and the exact-equation calcula-

tions of ref. [2] (R), we have used the function  

U(Ep) = (RERM(Ep)/R(Ep) - 1)  100, which shows the 

percentage divergence between these calculations.  
 

The effect of the diffraction minimum 

of nuclear form-factor on the ERM calculation 
 

Fig. 1, a shows the functions U(Ep) calculated for 

the radiative tails of peaks of elastic scattering by the 
1H and 4He nuclei at the energies Es = 260 MeV, 

100 MeV; the scattering angle θ = 60° and the target 

thicknesses T = 0.2 % radiative length1. As is obvi-

ous from the figure, in the case of 1H, the functions 

U(Ep) increase monotonically with a decreasing Ep, 

but in the case of Es = 1000 MeV the function U(Ep) 

of the 4He nucleus has a deep minimum at Ep = 

600 MeV (we shall denote the Ep values correspond-

ing to the minimum as Ep, m). This strong difference 

between the functions under consideration should be 

due to the difference in some of the characteristics of 

the nuclei. This characteristic must be present in the  
 

                                                 
1 All further calculations were carried out for the tar-

gets of this thickness and by using equations of Ref. [2].  

    U, % 

 
                                                                        Ep, MeV 

a 

    U, % 

 
                                                                          Ep, MeV 

b 

Fig. 1. Calculated U(Ep) for the nuclei 1H, 4He, 7Li and 
12C at the scattering angle θ = 60° and target thicknesses 

T = 0.2 % rad. length. The arrows show the initial elec-

tron energies in MeV units. a – solid lines – 1H; dashed 

lines – 4He; b – solid and dotted lines represent the cal-

culations for 7Li with the full form-factor and only with 

the charge form-factor, respectively; the dashed curves 

are for 12C. 
 

radiative tail calculations and be different for the 1H 

and 4He nuclei at Q > 1 fm-1, but not at Q ≈ 1 fm-1, 

where according to the calculation for Es = 260 MeV, 

the functions U(Ep) of the both nuclei considered are 

similar to each other. The only nuclear characteristic 

that corresponds to the mentioned requirements is 

the squared form-factor of the nuclear ground state 

Fel
2(Q) (hereafter, more simply the form-factor). So, 

the function Fel
2(Q) of the 1H nucleus decreases 

monotonically with increasing Q at all its values. As 

for the case of the 4He nucleus, at Q = 3.15 fm-1, its 

form-factor has the diffraction minimum (Fig. 2). 

Further on, the transfer momentum corresponding to 

the first diffraction minimum of the form-factor will 

be denoted as Qm, 1. To verify the found relationship 

between the minima of the functions U(Ep) and 

Fel
2(Q), we consider the behavior of U(Ep) for the 

7Li and 12C nuclei. Owing to the peculiarities of  
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Fig. 2. Squared ground-state form factors of 1H, 4He, 7Li 

and 12C (solid lines). In the case of 1H and 7Li nuclei, the 

form-factors were calculated for θ = 60°. The dotted line 

shows the charge form-factor of the 7Li nucleus. 
 

charge density distribution in the 7Li nucleus, its 

form-factor has no diffraction minimum at 

Q < 2.7 fm-1, while at the given transfer momenta we 

have a well-marked minimum in the form-factor of 

the 12C nucleus (see Fig. 2). So, in the nature of the 

functions Fel
2(Q), the pair of 7Li and 12C nuclei is 

similar to the pair of 1H and 4He. The calculation of 

U(Ep) for 7Li and 12C is given in Fig. 1, b. It can be 

seen that the function U(Ep) of the 7Li nucleus has 

no minimum, while in the 12C case the function 

U(Ep) shows the minimum at Ep, m = 360 MeV. In 

other words, Fig. 1, b for U(Ep) of the nuclei 7Li, 12C 

is similar to Fig. 1, a for U(Ep) of the nuclei 1H, 4He, 

and this is in agreement with the above-said assump-

tion about the reason for minimum appearance in the 

function U(Ep). 

The emergence of the diffraction minimum of the 

form-factor in the function U(Ep) can be attributed to 

the fact that the form-factor is differently involved in 

the exact-formula/ERM calculations of the radiative 

tail. Thus in the exact calculation, the form-factor is 

averaged over some range of transfer momenta, and 

this smoothes the calculated function of the radiative 

tail, while in the ERM approach the form-factor en-

ters into the calculation as a multiplying factor. So, 

the difference between the two calculations is the 

more, the greater is the second derived function of 

the form-factor, in other words, at Q’s somewhat 

lower than in the diffraction minimum and in the 

minimum itself.  

It should be noted that the equation for the radia-

tive tail of the elastic scattering peak includes the con-

tributions of both the longitudinal and transverse 

form-factors. The contribution from the transverse 

form-factor is absent in the form-factors of the 4He 

and 12C nuclei. It can be assumed that the minima in 

the functions U(Ep) of these nuclei are due to the  

absence of the transverse form-factor contribution in 

them. For checking this assumption, we have calcu-

lated the function U(Ep) of the 7Li nucleus with the 

form-factor, whereof the transverse form-factor con-

tribution was excluded. That is, the calculation was 

done only for the charge form-factor of this nucleus, 

as is the case with 4He and 12C nuclei. It can be seen 

in Fig. 1, b that the function U(Ep) calculated in this 

way is little different from the function having the 

contribution from the transverse form-factor. From 

this it can be concluded that there is no connection 

between the transverse form-factor of the nucleus and 

the clearly marked minimum in the function U(Ep).  

The practical consequence of revealing the min-

imum in the function U(Ep) is the fact that this min-

imum restricts the energy range (Ep) that permits the 

usage of the ERM approximation (Fig. 3). For a 

more detailed consideration of the conditions for the 

appearance of this restriction, a number of calcula-

tions were performed.  
 

  U, % 

 
                                                                            Ep, MeV 
 

Fig. 3. Functions U(Ep) of the nuclei 4He (solid lines) 

and 12C (dashed lines) at θ = 60° for different initial  

energies Es of MeV values indicated by arrows. The 

dotted lines show ΔU = ±5. 
 

The minima of functions U(Ep) 

at different calculation conditions 
 

The calculations of the functions U(Ep) for dif-

ferent kinematic conditions of elastic electron scat-

tering by nuclei must show the restrictions on the 

applicability of the ERM. Carrying-out of these cal-

culations for a few nuclei may point to common 

properties and differences of the functions U(Ep), 

which are typical of these nuclei, and thus may be 

helpful in generalizing the ERM applicability condi-

tions for some group of nuclei. 

Fig. 3 shows the calculated functions U(Ep) for 

the nuclei 4He and 12C at a fixed scattering angle and 

at different initial energies. Fig. 4 gives the calcula-

ted functions U(Ep) for the 12C nucleus at different θ 

angles. It is evident from the figures that:  
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   U, % 

 
                                                                            Ep, MeV 

 

Fig. 4. Functions U(Ep) of the nucleus 12C at different 

scattering angles θ. The functions U(Ep) corresponding 

to the same θ value but to different energies Es are 

shown by the same-type lines. For U(Ep) at θ = 60° the 

energy Es values are indicated by arrows. 
 

1) for the given nucleus and a fixed scattering an-

gle, the position of the minimum of the function 

U(Ep) with respect to the scattered electron energy 

(Ep, 1), is almost independent of the initial energies Es; 

2) with decrease in the energy Es, the depth of the 

minimum of the function U(Ep) decreases and be-

comes close to zero at Es ≈ Ep, m;  

3) the Ep, 1 value increases with a decrease in the 

scattering angle θ.  

Fig. 5 shows Ep, 1 as a function of θ, along with 

its calculation by the empirical formula 
 

 , ,1 100 sin 2p m mE Q     ,                 (3) 
 

Ep, m, MeV 

 
                                                                                     

 

Fig. 5. Scattered electron energies Ep, 1 versus θ. The 

energies Ep, 1 correspond to the minimum of the function 

U(Ep) for the nuclei 4He (points), 12C (circles), 16O (tri-

angles), 40Ca (sidelong crosses). The solid lines repre-

sent the calculation by formula (3). Straight crosses 

show the Ep, 2 values of 40Ca, related to the second mini-

mum of the form-factor. The corresponding calculation 

is shown by the dashed line. 

where the four-momentum Qm, 1 is in units of fm-1, Δ 

is the parameter invariable for each given nucleus 

and amounting to several MeV. For plotting the 

curves in Fig. 5, the Δ value was taken as zero.  

With substitution of appropriate Qm, 1 values, 

formula (3) can be also used for higher differential 

minima of the nuclear ground-state form-factor. As 

an example, Fig. 5 shows the Ep, 2 values for the min-

imum of the function U(Ep) related to the second 

diffraction minimum of 40Ca nuclear form-factor. 

Alongside, the same figure illustrates Ep, 2 as a func-

tion of θ, calculated by formula (3), where the  

momentum Qm, 1 was replaced by the momentum 

Qm, 2 = 2.02 fm-1. 

We put the acceptable deviation of the ERM cal-

culation from the exact-formula calculation to equal 

5 %, that is, whenU(Ep)  5, and denote 

U(Ep) = 5 as U. The experimental spectrum  

begins from the elastic peak energy Eel, where 

U(Ep) = 0. With a decrease in the scattered electron 

energy, the U value increases, and at a certain 

Ep, u it reaches the U value. We denote the spectral 

region, where the ERM is applicable for calculating 

the radiative tail of the elastic scattering peak, by 

max = Eel  Ep, u .  

From Figs. 1, 3, 4 it is evident that in some cases 

the Ep, u value determines the drop of the function 

U(Ep) to the minimum, and in the other cases, it 

specifies a small rise of the function on the high-

energy side. 

At the energies Es  Ep, m, the Ep, u value is deter-

mined by the growth rate of the function U(Ep) as Ep 

decreases (see Fig. 1). The calculated data on εmax 

for the nuclei 4He, 12C, 16O, 40Ca at θ = 40° ÷ 80° 
 

max, MeV 

 
                                                                            Es, MeV 
 

Fig. 6. The nuclear excitation energy εmax , up to which the 

ERM-calculated rad. tail of the elastic scattering peak 

differs within 5 % from the rad. tail value calculated by 

exact equations. The calculation is made for the scattering 

angles θ = 40° ÷ 80°. The notation of the nuclei, for which 

the εmax were found, is the same as in Fig. 5. 

12C 



APPLICATION OF THE EQUIVALENT RADIATOR METHOD 

213 

have shown (Fig. 6) that up to 600 MeV 

(Q < 3.8 fm-1), we have εmax = 40 MeV. With a de-

crease in the angle θ, the εmax values become to vary 

greatly and fail to be systematized. The increase  

in the angle θ reduces the εmax value down to  

εmax < 16 MeV at θ = 120°. 
 

Conclusions 
 

Consideration has been given to the possibility of 

calculating the radiative tail of the elastic scattering 

peak using the equivalent radiator method. 

In some spectral regions, the analysis has re-

vealed great differences between the ERM calcula-

tions and the calculations by exact formulae.  

Links have been established between the spec-

trum regions, where the ERM calculation appears 

invalid, and the diffraction minima of the nuclear 

ground-state form-factors.  

The excitation energies εmax, up to which the 

ERM is applicable, have been determined for the 

nuclei 4He, 12C, 16O, 40Ca. 

The ERM calculations for various nuclei at dif-

ferent scattering angles and initial electron energies 

just led to finding out a few regularities in the devia-

tion of the ERM calculations from the exact-formula 

calculations. These regularities have enabled us to 

extend the results obtained to a group of light nuclei 

(A ≤ 40).  

The practical outcome of the present work lies in 

the determination of the conditions, at which the 

ERM approximation can be applied for calculating 

the radiative tail of the elastic scattering peak. Ac-

cording to the analysis results, the ERM calculation 

of the radiative tail of the elastic scattering peak can 

be used in the studies of excited states of light nuclei 

at electron scattering angles θ = 40° ÷ 80° up to  

excitation energies of 40 MeV. As for the studies of 

quasielastic electron scattering and electroproduc-

tion processes, the ERM approximation for calculat-

ing the radiative tail of the elastic scattering peak 

does not appear sufficiently exact. 
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ВИКОРИСТАННЯ МЕТОДУ ЕКВІВАЛЕНТНОГО РАДІАТОРА 

ДЛЯ РАДІАЦІЙНОГО КОРЕГУВАННЯ СПЕКТРІВ 

ПРУЖНОГО РОЗСІЯННЯ ЕЛЕКТРОНІВ НА ЯДРАХ 
 

У процедурі радіаційного корегування спектрів непружного розсіяння електронів на ядрах для розрахунку 

радіаційних хвостів використовується наближений метод – метод еквівалентного радіатора. Однак можливість 

використання цього методу для оцінки радіаційного хвоста піка пружного розсіяння була мало досліджена і в 

даній роботі вивчається на прикладі легких ядер. Як результат, було знайдено області спектра, де розрахунки за 

методом еквівалентного радіатора та точною формулою значно розходяться. Було встановлено зв’язок між цим 

феноменом і дифракційним мінімумом квадрата формфактора основного стану ядра. Проведено ряд розрахун-

http://digital.library.temple.edu/%20cdm/ref/collection/p245801coll10/id/152421
http://digital.library.temple.edu/%20cdm/ref/collection/p245801coll10/id/152421
http://hallaweb.jlab.org/experiment/E05-110/exp_home/
http://hallaweb.jlab.org/experiment/E05-110/exp_home/
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ків для різних кінематичних умов розсіяння електронів на ядрах, а з аналізу результатів було визначено умови, 

за яких метод еквівалентного радіатора може бути використано для адекватної оцінки радіаційного хвоста для 

піка пружного розсіяння. 

Ключові слова: розсіювання електронів, радіаційні поправки, метод еквівалентного радіатора, дифракційний 

мінімум формфактора. 
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ПРИМЕНЕНИЕ МЕТОДА ЭКВИВАЛЕНТНОГО РАДИАТОРА 

ДЛЯ РАДИАЦИОННОЙ КОРРЕКТИРОВКИ СПЕКТРОВ 

УПРУГОГО РАССЕЯНИЯ ЭЛЕКТРОНОВ НА ЯДРАХ 
 

В радиационной корректировке спектров неупругого рассеяния электронов на ядрах для расчета радиацион-

ных хвостов вместо точного, но трудоемкого расчета применяется приближенный метод эквивалентного радиа-

тора. В настоящей работе рассматривается возможность применения этого метода для расчета радиационного 

хвоста от пика упругого рассеяния. В процессе исследования обнаружены участки спектра рассеянных элек-

тронов, на которых наблюдается большое расхождение расчетов точного и по методу эквивалентного радиато-

ра и установлена связь этого расхождения с дифракционными минимумами квадрата формфактора основного 

состояния ядра. Из анализа результатов ряда расчетов определены условия, при которых можно применять ме-

тод эквивалентного радиатора для расчета радиационных хвостов от пиков упругого рассеяния электронов на 

легких ядрах. 

Ключевые слова: рассеяние электронов, радиационные поправки, метод эквивалентного радиатора, дифрак-

ционный минимум формфактора. 
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