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MULTISCALE SIMULATION ALGORITHM FOR STOCHASTIC COOLING SIMULATION

The subsequent steps on improvement of the numerical methods for solution of the stochastic cooling simulation are
described. The algorithmic approach for improvement of solution of one dimensional Fokker - Planck equation (FPE) is
presented in the paper. This approach is based on a multiscale simulation algorithm to increase the accuracy of the FPE

solution.
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Introduction

Investigation of the particle motion under the in-
fluence of noise is very important problem of accel-
erator physics. For the correct using of accelerators
one should know the following: what is the long
time behavior of the dynamics, what is the probabil-
ity for the particle to hit the vacuum chamber (and
then be lost) (mean first passage time), what are the
average fluctuations of the particle around the peri-
odic design orbit of the accelerator (moments), and
what is the time evolution of the probability density
(transient and stationary behavior). In order to an-
swer on these questions the stochastic cooling sys-
tem is used.

In our previous papers, the main principles of
stochastic cooling were described [1 - 3]. For the
theoretical investigations the space fractional FPE
with instantaneous source is considered and different
numerical schemes for solving FPE are used [4 - 6].
It was shown that using the different methods of
fractional derivatives the FPE is transformed into a
system of ordinary differential equations. Numerical
results for FPE with a constant diffusion coefficient
are evaluated for analyses of the stochastic cooling.

In this paper the numerical solution of FPE using
a time and space scaling during numerical solving of
FPE is described. It will be shown that scaling of
FPE is able to increase the accuracy of FPE solution.

Time scaling simulation algorithm

The FPE describes the change of Probability
Density Function (PDF) or y(z, t) in a space z and
time t, where z can be interpreted either as a momen-
tum spread Ap/p or as an emittance &. For calcula-
tions of stochastic cooling processes, the general
FPE for the PDF (y(z, t)) evolution of one space
variable z at time t has the form

L)
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where F(z, t) and D(z, t) are known functions which
may depend, in principle, on time, and y(z, t) repre-
sents the unknown solution.

406

Stochastic momentum cooling is operated to ob-
tain a high-density beam within a small momentum
spread for experiments. The goal of the cooling is
reduction of momentum spread and emmitance in all
directions: transverse and longitudinal. As result: the
phase space density of particles will be increased. A
FPE is used as a powerful tool for investigating the
stochastic momentum cooling process. We study the
momentum spread of the particles distribution of
which is described by function y = y(z, t), where
z = Ap/p is momentum spread. In the case of sto-
chastic cooling F describes the cooling force and D
is diffusion term. These coefficients characterize the
given stochastic cooling system.

We are interested in the time evolution of the
density y. Such evolution looks like as it is presen-
ted by Fig. 1. During the cooling, the peak of the
distribution function becomes sharper [4].

T
30

—T T L T T
I
25

|

|

20

T

T T T T T T
0006 -0004 -0002 0000 0002 0004 0006

7
Fig. 1. Evolution of the PDF
during the stochastic cooling.
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In ref. [4 - 6] several numerical methods were de-
veloped for simulation of FPE. It has been shown that
stochastic cooling is modeled by the Fokker - Planck,
where the evolution of the PDF is studied. It was
shown that using the different methods of fractional
derivatives the FPE is transformed into a system of
partial differential equations (PDE). Then the PDE
system can be solved by different methods [4, 5].
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The solution of FPE is based on that the PDE (par-
tial differential equation) algorithm computes values
y which approximate the true solution y on the grid
of certain size (Ni, N;) by yij w(iAz, jAt) fori =0, 1,
2,...andj=0,1, .. N. Using such discretization and
finite difference method a set of ordinary linear
equations can be build, which in matrix form for the
fixed i can be written as

(1 —AOL)y,.; = (1 —AtA-0)L)y;, (2

where | is the N x N identity matrix. L is the tri-
diagonal matrix obtained from the differential opera-
tor, 0 is the parameter (see Ref. [4]). The choice of
the parameter 0 affects the stability of the method.
Common choices are 6 = 0 (Euler scheme), 6 = 1/2
(Crank Nicolson scheme) or 6 = 1 (implicit Euler
scheme).

In our own implementation the Crank Nicolson
method is used. The solution of FPE is stable de-
pending of the choice of At.

The accuracy of this approximation depends on
the step sizes At and Az. The smaller these values are
the more accurate is the approximation (and the
more expensive is the algorithm). The algorithm
works by considering a grid row with fixed t at a
time, starting with an approximation of the initial
condition: (oo, ..., Wno). Then, in each step, the algo-
rithm uses the approximation (yoj, ..., yn;) for time
jAt to compute an approximation for time (j + 1)At.
The dimension of the domain of the equation is as-
sumed that PDF has a distribution, which is closed
to a normal distribution with a small variance. One
sees that the PDEs of FPE type are discretized in
space by a finite volume method. The PDESs preserve
the total probability and the non-negativity of the
solutions and the numerical method shares these
properties. The expected values are also non-
negative in the numerical solution. If the solutions
are allowed to be negative, then severe numerical
instabilities occur. The solution is advanced in time
by an unconditionally stable implicit method and
thus problems with stiff systems are avoided. If the
space discretization is stable, then there is a unique
and positive steady state solution.

Important progress has been made towards effi-
cient algorithms for discrete FPE simulation. The
leaping forward method is proposed which can take
time step smaller than the initial time step for a solu-
tion of FPE. The leaping method shows a promising
direction to improve the accuracy of FPE solution.
But it has a limitation, in that they are based on the
assumption that the probability function wy(z, t),
should not change significantly during each time
step. This requires the population of the species to
be large relative to one.
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The computational work increases slowly with
the dimension of the problem compared to the expo-
nential growth with a deterministic method for the
master equation. A disadvantage of the method is
that the time steps between the PDF can be very
small compared to the prevailing dynamics of the
system if there are separate time scales in the solu-
tion. The fast scale requires small time increments
but for an accurate solution it is sufficient to follow
the slow scale.

It is proposed to use the next time step scaling
simulation algorithm:

Given initial time t, initial state At and total coo-
ling time Teool.

Step 1. Compute the PDF state for the initial time t.

Step 2. Forj=1, ..., Ns, calculate a y(z, t).

Step 3. FPE is solved using Eq. (2), y(z, t + At) is
calculated having y(z, t).

Step 4. The time step for the next FPE iteration is
given by At = At - dt, where dt is calculated by tau-
leaping formula

A 1 .
Tcool F , ( )

dt=r1

where the t parameter defines the leaping rate, F is
the decreasing factor of At.

Step 5. If t > T, Stop. Otherwise update the
timet=t+ At

Go to Step 2.

Numerical simulations
for the antiproton beam cooling

The method given above is applied for solutions
of FPE, which is described in Ref. [1]. Fig. 2 shows
the evolution of the momentum spread during coo-
ling of antiprotons at the Collector Ring (CR) of the
FAIR complex (Darmstadt, Germany). In the simu-
lation the Teool = 20 s, the initial time step At = 10,
t = 50, F = 100. This means the time step must be
changed from 10 to 10 as it is shown in Fig. 3.
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Fig. 2. Momentum spread evolution due to stochastic
cooling calculated by 1D FPE. The time step is 10 s and
time step is varied from 10“to 10 s.
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Fig. 3. Changing of the time step
in the FPE calculated by Eq. (3).

Fig. 2 and Fig.3 confirm that the momentum
spread evolution as well as the accuracy of the pro-
posed method for the changed time step represents the
result obtained with constant time step quite well.

Grid step scaling

This approach has the advantage over other
methods that it often scales linearly with the number
of discrete nodes used. The solving FPE means cal-
culation of the PDF (or y) function over a certain
time as shown in Fig. 4. It is assumed that the FPE is
solved approximately (with a given accuracy) on a
grid i with a given grid points density Ni. When the
rms value of the PDF becomes rather small and
comparable with a grid step AZ (see Fig. 4, b) obvi-
ously the accuracy of the solutions is very low. Fur-
thermore a solution of the FPE can be obtained on
any grid Ny with a given effort from a solution on a
coarser grid Ni. In other words, the grid is narrowed
as shown in Fig. 5, a. The p ratio of the neighbo-

35 ! ! 1 1 ! ! 1 ! !

Y 1a

3,0 +

254

2,0+

0.0 Q

T T T T T T T T T
-0,010 -0,008 -0,006 -0,004 -0,002 0,000 0,002 0004 0,006 0008 0,010

ring grid steps is assumed to be not constant, while
the grid number remains constant Nx = N;. One can
write that for the new grid step AX

AX
=22 1 4
P=77 < (4)

is the ratio of grid points on “neighboring” grids and
it is assumed to be constant throughout the grid hier-
archy, and AZ is a grid step of the coarser grid and
AX is a grid step of a new denser grid Nk as shown
in Fig. 5, b. This means the PDF is calculated on the
grid, which has a variable grid step. In Fig. 5, a the
PDF, which has been calculated at time tc and has
narrow broad width, is shown on the new dense grid.

Algorithm for simulation of grid step scaling is
the next.

1. A 2D two-scale mesh is constructed with a
given grid step AZ.

2. The domain Q into a coarse mesh J(Q) is de-
composed with a certain number of grids N;.

3. After certain evolution time of the y on the
coarse mesh J(Q) the y function is saved.

4. The new domain y in a new mesh K(y) is de-
composed with the number of grids Nx = Ni.

5. The finite element space over the composite fi-
ne mesh is defined. New step grids AX is calculated.

6. Then each coarse block [, I + 1] is subdivided
into subgrid blocks as shown in Fig. 5, b, where
coarse space J(Q) is defined on K(y) and subgrid
space AX is defined for each coarse block AZ.

7. The y function is defined on the fine mesh
K(x). Unknown points Xk at nodes of fine mesh are
calculated through known four points Z; using inter-
polation Langrage algorithm (see Fig. 5, b).
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Fig. 4. v function evolution on the static grid mesh (a — for initial time, b — later time).
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Fig. 5. Grid narrowing (a) and psi function calculation on the new narrowed grid (b).

Numerical simulations for the antiproton cooling

In order to demonstrate the efficiency and accu-
racy of the proposed method for solution of FPE, the
numerical simulation of antiproton cooling at the CR
has been done. The parameters of the CR cooling
system used in simulation are given in Ref. [4 - 7].
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Fig. 6, a shows the evolution of the momentum
spread in two cases: when the grid is stable and grid
is variable, where the grid transformations are per-
formed as written above. Fig. 6, b shows the grid
step variations applied in this test simulation.
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Fig. 6. Momentum spread evolution calculated for antiproton beam cooling at the CR (a);
grid step narrowing during psi function evolution (b).

Conclusions and futures

In this paper, the fast and precise method for the
higher dimensions stochastic cooling calculations
has been discussed. The special code has been de-
veloped to study the beam dynamic in storage ring,
where the stochastic cooling process must be used.

Presented method can be used for the wide range
of tasks and will be applied to more realistic parame-
ters for studying the dynamics of particles in storage
rings.

In the near future, this work will be extended to
investigation of stochastic cooling systems, which
can allow to cool beam by different methods: TOF,
Notch filter and Palmer [1].

REFERENCES

1. Mohl D. Stochastic cooling of particle beams. -
Springer-Verlag, 2013.

2. Bosser J. et al. Stability of cooled beams // NIM. -
2000. - Vol. A441. - P. 1.

3. Nolden F., Beckert K., Beller P. et al. Fast Stochastic
Cooling of Heavy lons at the ESR Storage Ring //
Proc. of EPAC. - Austria, Vienna, 2000.

ISSN 1818-331X SAJAEPHA ®I3UKA TA EHEPTETHUKA 2016 T. 17 Ne 4

4. Dolinska M. Fokker - Planck equation solver for study
stochastic cooling in storages rings // Nuclear Physics
and Atomic Energy. - 2011. - Vol. 12, No. 4. - P. 407 -
413.

5. Dolinska M. Numerical algorithm based on the PDE
method for solution of the Fokker - Planck equation //
Problems of Atomic Science and Technology. - 2011.
- Vol. 5(75). - P. 63 - 66.

409



M. E. DOLINSKA, N. L. DOROSHKO

6. Dolinska M., Dimopoulou C., Dolinskii A. et al. PDE 7. Dolinska M., Dimopoulou C., Dolinskii A. et al. Simu-

numerical method // Proc. of the 2-nd Int. Particle lations of Antiproton Stochastic Cooling in the CR //
Accelerator Conference IPAC 2011 (Sept. 04 - 09, GSI Scientific report 2011. - Darmstadt, 2011. -
2011, San Sebastian, Spain). - 2011. - P. 2298 - 2300. P. 327.

M. E. Joaincbka, H. JI. lopomiko
Tuemumym s0eprux docnioxcenv HAH Vkpainu, Kuis

YUCEJIbHUN AJITOPUTM BATATOKPATHOI'O MACHITABYBAHHA
JJI CUMYJISIOIN CTOXACTHYHOI'O OXOJIO/KEHHS

OmnmcaHo Mok KPOKH MO0 BAOCKOHAIEHHS YHCEIbHOI METOIUKH PO3PAXyHKIB IPOIECIB CTOXACTUYHOTO OXO-
nmokeHHs. HaBeneHo yIocKOHaJIeHUH anropuTM BHpIIIeHHS ogHOMipHOTO piBHSHHA @okkepa - [Tmanka. Llew miaxin
0a3yeTbcsd Ha CUMYJLIIHHOMY aJTOpUTMI OaraToKpaTHOTo MacimuTaOyBaHHS, IO Aa€ 3MOTY 30UTBIIMTH TOYHICTH pi-
IIeHHS po3B’ 3Ky piBHAHHS Dokkepa - [Lmanka.

Kniouosi crnosa: croxacTudHe 0XoJIoJpKeHHs, piBHsHHS Doxkepa - [TnaHka, iMIyJIbCHUI pO3KH[, aHTUIPOTOHHHNA
IIy4OK.

M. 3. Joaunckas, H. JI. lopouiko
Hnemumym adeprovix uccneoosanuii HAH Yxpaunei, Kues

YUCJEHHBIA AJITOPUTM MHOTI'OKPATHOI'O MACIITABUPOBAHU A
I CUMYJSIOUN CTOXACTHYECKOI'O OXUIAKJIEHUA

OmnucaHpl MOCHEAYIOMNE IIAaTH [0 COBEPIICHCTBOBAHUIO YHCICHHOW METOJUKHU PacdeTOB MPOIECCOB CTOXACTHYe-
CKOro oxJnaxaeHus. J[aHHasl CTaTbs OMUCHIBACT YCOBEPIIEHCTBOBAHHBIN aJrOPUTM PELICHUS OJHOMEPHOTO YPaBHEHUS
®oxkepa - ITnanka. ITOT Moaxon Oazupyercs Ha CUMYJSIIMOHHOM QJITOPUTME MHOTOKPAaTHOTO MacIITaOMpOBaHMS,
KOTOPBIH MO3BOJISET YBEJIMYUTh TOUHOCTH pelleHus ypaBHeHus Poxkepa - [Tnanka.

Kniouegvie cnosa: ctoxactTnieckoe oxiaxaeHue, ypasHeHne ®oxkepa - Ilnanka, IMIyIIbCHBIN pa30dpoc, aHTHIIPO-
TOHHBIN ITyYOK.
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