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MULTISCALE SIMULATION ALGORITHM FOR STOCHASTIC COOLING SIMULATION 
 

The subsequent steps on improvement of the numerical methods for solution of the stochastic cooling simulation are 

described. The algorithmic approach for improvement of solution of one dimensional Fokker - Planck equation (FPE) is 

presented in the paper. This approach is based on a multiscale simulation algorithm to increase the accuracy of the FPE 

solution.  
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Introduction 
 

Investigation of the particle motion under the in-

fluence of noise is very important problem of accel-

erator physics. For the correct using of accelerators 

one should know the following: what is the long 

time behavior of the dynamics, what is the probabil-

ity for the particle to hit the vacuum chamber (and 

then be lost) (mean first passage time), what are the 

average fluctuations of the particle around the peri-

odic design orbit of the accelerator (moments), and 

what is the time evolution of the probability density 

(transient and stationary behavior). In order to an-

swer on these questions the stochastic cooling sys-

tem is used.  

In our previous papers, the main principles of 

stochastic cooling were described [1 - 3]. For the 

theoretical investigations the space fractional FPE 

with instantaneous source is considered and different 

numerical schemes for solving FPE are used [4 - 6]. 

It was shown that using the different methods of 

fractional derivatives the FPE is transformed into a 

system of ordinary differential equations. Numerical 

results for FPE with a constant diffusion coefficient 

are evaluated for analyses of the stochastic cooling.  

In this paper the numerical solution of FPE using 

a time and space scaling during numerical solving of 

FPE is described. It will be shown that scaling of 

FPE is able to increase the accuracy of FPE solution. 
 

Time scaling simulation algorithm 
 

The FPE describes the change of Probability 

Density Function (PDF) or ψ(z, t) in a space z and 

time t, where z can be interpreted either as a momen-

tum spread Δp/p or as an emittance ε. For calcula-

tions of stochastic cooling processes, the general 

FPE for the PDF (ψ(z, t)) evolution of one space 

variable z at time t has the form  
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where F(z, t) and D(z, t) are known functions which 

may depend, in principle, on time, and ψ(z, t) repre-

sents the unknown solution.  

Stochastic momentum cooling is operated to ob-

tain a high-density beam within a small momentum 

spread for experiments. The goal of the cooling is 

reduction of momentum spread and emmitance in all 

directions: transverse and longitudinal. As result: the 

phase space density of particles will be increased. A 

FPE is used as a powerful tool for investigating the 

stochastic momentum cooling process. We study the 

momentum spread of the particles distribution of 

which is described by function ψ = ψ(z, t), where  

z = Δp/p is momentum spread. In the case of sto-

chastic cooling F describes the cooling force and D 

is diffusion term. These coefficients characterize the 

given stochastic cooling system. 

We are interested in the time evolution of the 

density ψ. Such evolution looks like as it is presen-

ted by Fig. 1. During the cooling, the peak of the 

distribution function becomes sharper [4].  
 

   

 
Fig. 1. Evolution of the PDF 

during the stochastic cooling. 
 

In ref. [4 - 6] several numerical methods were de-
veloped for simulation of FPE. It has been shown that 
stochastic cooling is modeled by the Fokker - Planck, 
where the evolution of the PDF is studied. It was 
shown that using the different methods of fractional 
derivatives the FPE is transformed into a system of 
partial differential equations (PDE). Then the PDE 
system can be solved by different methods [4, 5].  
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The solution of FPE is based on that the PDE (par-

tial differential equation) algorithm computes values 

ψ which approximate the true solution ψ on the grid 

of certain size (Ni, Nj) by ψij ψ(iΔz, jΔt) for i = 0, 1, 

2, ... and j = 0, 1, ... N. Using such discretization and 

finite difference method a set of ordinary linear 

equations can be build, which in matrix form for the 

fixed i can be written as  
 

   1 (1 )j jI t L I t L          ,     (2) 

 

where I is the N × N identity matrix. L is the tri-

diagonal matrix obtained from the differential opera-

tor, θ is the parameter (see Ref. [4]). The choice of 

the parameter θ affects the stability of the method. 

Common choices are θ = 0 (Euler scheme), θ = 1/2 

(Crank Nicolson scheme) or θ = 1 (implicit Euler 

scheme).  

In our own implementation the Crank Nicolson 

method is used. The solution of FPE is stable de-

pending of the choice of Δt.  

The accuracy of this approximation depends on 

the step sizes Δt and Δz. The smaller these values are 

the more accurate is the approximation (and the 

more expensive is the algorithm). The algorithm 

works by considering a grid row with fixed t at a 

time, starting with an approximation of the initial 

condition: (ψ00, ..., ψN0). Then, in each step, the algo-

rithm uses the approximation (ψ0j, ..., ψNj) for time 

jΔt to compute an approximation for time (j + 1)Δt. 

The dimension of the domain of the equation is as-

sumed that PDF has a distribution, which is closed 

to a normal distribution with a small variance. One 

sees that the PDEs of FPE type are discretized in 

space by a finite volume method. The PDEs preserve 

the total probability and the non-negativity of the 

solutions and the numerical method shares these 

properties. The expected values are also non-

negative in the numerical solution. If the solutions 

are allowed to be negative, then severe numerical 

instabilities occur. The solution is advanced in time 

by an unconditionally stable implicit method and 

thus problems with stiff systems are avoided. If the 

space discretization is stable, then there is a unique 

and positive steady state solution.  

Important progress has been made towards effi-

cient algorithms for discrete FPE simulation. The 

leaping forward method is proposed which can take 

time step smaller than the initial time step for a solu-

tion of FPE. The leaping method shows a promising 

direction to improve the accuracy of FPE solution. 

But it has a limitation, in that they are based on the 

assumption that the probability function ψ(z, t), 

should not change significantly during each time 

step. This requires the population of the species to 

be large relative to one.  

The computational work increases slowly with 
the dimension of the problem compared to the expo-
nential growth with a deterministic method for the 
master equation. A disadvantage of the method is 
that the time steps between the PDF can be very 
small compared to the prevailing dynamics of the 
system if there are separate time scales in the solu-
tion. The fast scale requires small time increments 
but for an accurate solution it is sufficient to follow 
the slow scale.  

It is proposed to use the next time step scaling 
simulation algorithm: 

Given initial time t, initial state Δt and total coo-
ling time Tcool. 

Step 1. Compute the PDF state for the initial time t.  
Step 2. For j = 1, ... , Ns, calculate a ψ(z, t).  
Step 3. FPE is solved using Eq. (2), ψ(z, t + Δt) is 

calculated having ψ(z, t). 
Step 4. The time step for the next FPE iteration is 

given by Δt = Δt - dt, where dt is calculated by tau-
leaping formula 
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cool
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  ,                            (3) 

 

where the τ parameter defines the leaping rate, F is 

the decreasing factor of Δt.  

Step 5. If t > Tcool, stop. Otherwise update the 

time t = t + Δt.  

Go to Step 2. 
 

Numerical simulations 

for the antiproton beam cooling 
 

The method given above is applied for solutions 
of FPE, which is described in Ref. [1]. Fig. 2 shows 
the evolution of the momentum spread during coo-
ling of antiprotons at the Collector Ring (CR) of the 
FAIR complex (Darmstadt, Germany). In the simu-
lation the Tcool = 20 s, the initial time step Δt = 10-4, 
τ = 50, F = 100. This means the time step must be 
changed from 10-4 to 10-6 as it is shown in Fig. 3. 

  

 
 

Fig. 2. Momentum spread evolution due to stochastic 

cooling calculated by 1D FPE. The time step is 10-4 s and 

time step is varied from 10-4 to 10-6 s. 
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Fig. 3. Changing of the time step 

in the FPE calculated by Eq. (3). 

 

Fig. 2 and Fig. 3 confirm that the momentum 

spread evolution as well as the accuracy of the pro-

posed method for the changed time step represents the 

result obtained with constant time step quite well.  
 

Grid step scaling 
 

This approach has the advantage over other 

methods that it often scales linearly with the number 

of discrete nodes used. The solving FPE means cal-

culation of the PDF (or ψ) function over a certain 

time as shown in Fig. 4. It is assumed that the FPE is 

solved approximately (with a given accuracy) on a 

grid i with a given grid points density Ni. When the 

rms value of the PDF becomes rather small and 

comparable with a grid step ΔZ (see Fig. 4, b) obvi-

ously the accuracy of the solutions is very low. Fur-

thermore a solution of the FPE can be obtained on 

any grid Nk with a given effort from a solution on a 

coarser grid Ni. In other words, the grid is narrowed 

as shown in Fig. 5, a. The ρ ratio of the neighbo-

ring grid steps is assumed to be not constant, while 

the grid number remains constant Nk = Ni. One can 

write that for the new grid step ΔX 

 

1
X

Z


  


                             (4) 

 

is the ratio of grid points on “neighboring” grids and 

it is assumed to be constant throughout the grid hier-

archy, and ΔZ is a grid step of the coarser grid and 

ΔX is a grid step of a new denser grid NK as shown 

in Fig. 5, b. This means the PDF is calculated on the 

grid, which has a variable grid step. In Fig. 5, a the 

PDF, which has been calculated at time tk and has 

narrow broad width, is shown on the new dense grid.  

Algorithm for simulation of grid step scaling is 

the next.  

1. A 2D two-scale mesh is constructed with a 

given grid step ΔZ.  

2. The domain Ω into a coarse mesh J(Ω) is de-

composed with a certain number of grids Ni. 

3. After certain evolution time of the ψ on the 

coarse mesh J(Ω) the ψ function is saved.  

4. The new domain χ in a new mesh K(χ) is de-

composed with the number of grids Nk = Ni. 

5. The finite element space over the composite fi-

ne mesh is defined. New step grids ΔX is calculated.  

6. Then each coarse block [I, I + 1] is subdivided 

into subgrid blocks as shown in Fig. 5, b, where 

coarse space J(Ω) is defined on K(χ) and subgrid 

space ΔX is defined for each coarse block ΔZ.  

7. The ψ function is defined on the fine mesh 

K(χ). Unknown points Xk at nodes of fine mesh are 

calculated through known four points Zi using inter-

polation Langrage algorithm (see Fig. 5, b). 
 

  
 

Fig. 4. ψ function evolution on the static grid mesh (a – for initial time, b – later time). 
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Fig. 5. Grid narrowing (a) and psi function calculation on the new narrowed grid (b). 
 

Numerical simulations for the antiproton cooling 
 

In order to demonstrate the efficiency and accu-

racy of the proposed method for solution of FPE, the 

numerical simulation of antiproton cooling at the CR 

has been done. The parameters of the CR cooling 

system used in simulation are given in Ref. [4 - 7]. 

Fig. 6, a shows the evolution of the momentum 

spread in two cases: when the grid is stable and grid 

is variable, where the grid transformations are per-

formed as written above. Fig. 6, b shows the grid 

step variations applied in this test simulation.  
 

  
 

Fig. 6. Momentum spread evolution calculated for antiproton beam cooling at the CR (a); 

grid step narrowing during psi function evolution (b). 
 

Conclusions and futures 
 

In this paper, the fast and precise method for the 

higher dimensions stochastic cooling calculations 

has been discussed. The special code has been de-

veloped to study the beam dynamic in storage ring, 

where the stochastic cooling process must be used. 

Presented method can be used for the wide range 
of tasks and will be applied to more realistic parame-
ters for studying the dynamics of particles in storage 
rings. 

In the near future, this work will be extended to 
investigation of stochastic cooling systems, which 
can allow to cool beam by different methods: TOF, 
Notch filter and Palmer [1]. 

 

REFERENCES 

 

1. Möhl D. Stochastic cooling of particle beams. - 

Springer-Verlag, 2013. 

2. Bosser J. et al. Stability of cooled beams // NIM. - 

2000. - Vol. A441. - P. 1. 

3. Nolden F., Beckert K., Beller P. et al. Fast Stochastic 

Cooling of Heavy Ions at the ESR Storage Ring // 

Proc. of EPAC. - Austria, Vienna, 2000. 

4. Dolinska M. Fokker - Planck equation solver for study 

stochastic cooling in storages rings // Nuclear Physics 

and Atomic Energy. - 2011. - Vol. 12, No. 4. - P. 407 - 

413. 

5. Dolinska M. Numerical algorithm based on the PDE 

method for solution of the Fokker - Planck equation // 

Problems of Atomic Science and Technology. - 2011. 

- Vol. 5(75). - P. 63 - 66. 



M. E. DOLINSKA, N. L. DOROSHKO 

410                                                                      ISSN 1818-331X   NUCLEAR PHYSICS AND ATOMIC ENERGY  2016  Vol. 17  No. 4 

6. Dolinska M., Dimopoulou C., Dolinskii A. et al. PDE 

numerical method // Proc. of the 2-nd Int. Particle  

Accelerator Conference IPAC 2011 (Sept. 04 - 09, 

2011, San Sebastián, Spain). - 2011. - P. 2298 - 2300. 

7. Dolinska M., Dimopoulou C., Dolinskii A. et al. Simu-

lations of Antiproton Stochastic Cooling in the CR // 

GSI Scientific report 2011. - Darmstadt, 2011. - 

P. 327. 
 

М. Е. Долінська, Н. Л. Дорошко 
 

Інститут ядерних досліджень НАН України, Київ 
 

ЧИСЕЛЬНИЙ АЛГОРИТМ БАГАТОКРАТНОГО МАСШТАБУВАННЯ 

ДЛЯ СИМУЛЯЦІЙ СТОХАСТИЧНОГО ОХОЛОДЖЕННЯ  

 

Описано подальші кроки щодо вдосконалення чисельної методики розрахунків процесів стохастичного охо-

лодження. Наведено удосконалений алгоритм вирішення одномірного рівняння Фоккера - Планка. Цей підхід 

базується на симуляційному алгоритмі багатократного масштабування, що дає змогу збільшити точність рі-

шення розв’язку рівняння Фоккера - Планка.   

Ключові слова: стохастичне охолодження, рівняння Фоккера - Планка, імпульсний розкид, антипротонний 

пучок. 
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ЧИСЛЕННЫЙ АЛГОРИТМ МНОГОКРАТНОГО МАСШТАБИРОВАНИЯ 

ДЛЯ СИМУЛЯЦИИ СТОХАСТИЧЕСКОГО ОХЛАЖДЕНИЯ  
 

Описаны последующие шаги по совершенствованию численной методики расчетов процессов стохастиче-

ского охлаждения. Данная статья описывает усовершенствованный алгоритм решения одномерного уравнения 

Фоккера - Планка. Этот подход базируется на симуляционном алгоритме многократного масштабирования, 

который позволяет увеличить точность решения уравнения Фоккера - Планка.  

Ключевые слова: стохастическое охлаждение, уравнение Фоккера - Планка, импульсный разброс, антипро-

тонный пучок. 
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