УДК 539.142

https://doi.org/10.15407/jnpae2018.01.005

І. М. Вишневський¹, В. О. Желтоножський¹, А. М. Саврасов^{1*}, В. А. Плюйко², О. М. Горбаченко², К. М. Солодовник²

¹ Інститут ядерних досліджень НАН України, Київ, Україна ² Київський національний університет імені Тараса Шевченка, Київ, Україна

*Відповідальний автор: asavrasov@kinr.kiev.ua

СЕРЕДНІ КУТОВІ МОМЕНТИ ФРАГМЕНТІВ ФОТОПОДІЛУ ²³⁸U ГАЛЬМІВНИМ ВИПРОМІНЮВАННЯМ

На основі результатів експериментів по фотоподілу ²³⁸U гальмівними γ -квантами виміряно ізомерні відношення виходів ядер ⁹⁵Nb і ¹³³Xe при граничній енергії $E_e = 12,5$ MeB та ¹³⁵Xe при $E_e = 12,0$ MeB. Ізомерні відношення було отримано з урахуванням внеску від розпаду ізобарних ядер у виходи досліджуваних нуклідів. Обчислено середні кутові моменти досліджуваних фрагментів поділу в рамках статистичної моделі розпаду.

Ключові слова: фотоподіл, ізомерні відношення виходів, середні кутові моменти фрагментів поділу.

Вступ

Експериментальне дослідження динаміки поділу ядра до теперішнього часу лишається важливою задачею, необхідною для розробки теоретичних моделей поділу. Зокрема, одним із недостатньо вивчених питань процесу поділу ядра є одночасне існування двох каналів поділу: симетричного й асиметричного. Важливими експериментальними даними, що використовуються при описі динаміки поділу ядра, є середні кутові моменти продуктів поділу. Вони застосовуються при описі переходу ядра, що ділиться, від сідлової точки до точки розриву.

Метод ізомерних відношень – один із найбільш розвинених методів отримання інформації про середні кутові моменти фрагментів поділу. Він базується на вимірюванні відношень перерізів σ_{α} або виходів Y_{α} утворення високоспінових (α = high) та низькоспінових (α = low) станів того самого уламка поділу, що має ізомерний стан $R_{\sigma} = \sigma_{high} / \sigma_{low}$ ($R_{\gamma} = Y_{high} / Y_{low}$).

Експериментальні дані про виходи фрагментів поділу актуальні і для вирішення ряду прикладних задач в ядерній та радіаційній фізиці, так як у багатьох ситуаціях розрахункові значення виходів фрагментів відрізняються від експериментальних даних на десятки відсотків. Тому будь-яка інформація про напрацювання радіонуклідів при поділі атомних ядер дозволяє підвищити достовірність прогнозних оцінок.

Слід відзначити, що основна інформація про величини $R_{\sigma}(R_{\gamma})$ отримана в реакціях поділу під дією нейтронів (n, f) [1]. Експериментальні дані по вимірюванню ізомерних відношень у реакціях фотоподілу (γ , f) переважно отримані для таких материнських ядер-актинідів, як ²³²Th, ^{235,238}U [2 - 9] та ²³⁷Np, ²³⁹Pu i ²⁴¹Am [10 - 12].

Серед отриманих значень ізомерних відношень недостатньо експериментальної інформації для легкого уламку поділу ⁹⁵Nb та важкого ¹³³Xe, а для ізотопу ¹³⁵Xe спостерігаються флуктуації значення ізомерного відношення.

Дана робота є продовженням циклу досліджень ізомерних відношень та середніх кутових моментів фрагментів фотоподілу ядер-актинідів (див. [11 - 16] та посилання в них). Метою даної роботи було дослідження ізомерних відношень та середніх кутових моментів при фотоподілі ядер ²³⁸U для уламків ¹³³Xe, ¹³⁵Xe та ⁹⁵Nb у реакції (γ , f) в області нижче порога (γ , nf) та виявлення закономірностей поведінки ізомерних відношень залежно від енергії гальмівного випромінювання шляхом порівняння з раніше отриманими даними.

Методика та експериментальні результати

Опромінення мішені в рамках активаційної методики проводилось γ -квантами при гальмуванні електронів з енергіями $E_e = 12$ та $E_e = 12,5$ МеВ. Експеримент проводився на мікротроні М-30 в ІЕФ НАН України (Ужгород). В якості мішені використовувався зразок ²³⁸U у вигляді збірки смужок із напиленим ²³⁸U (загальна маса ізотопу 2 г), між якими було розташовано алюмінієві фольги. На рис. 1 представлено схематичне зображення геометрії опромінюваного зразка ²³⁸U. При опроміненні зразка гальмівними γ -квантами на поверхні алюмінієвих фольг

[©] І. М. Вишневський, В. О. Желтоножський, А. М. Саврасов, В. А. Плюйко, О. М. Горбаченко, К. М. Солодовник, 2018

осаджуються радіоактивні уламки, що виникають під час поділу урану та вилітають зі смужок. Після опромінення зразків активовані алюмінієві фольги переносяться до γ -спектрометра (за певний час «охолодження» t_c) та проводиться вимірювання γ -спектрів фрагментів поділу (за час t_m).

Алюмінієві фольги

Рис. 1. Схематичне зображення геометрії опромінення мішеней з ²³⁸U.

Опромінення зразка проводилося протягом $t_{ir} = 20$ хв при $E_e = 12$ МеВ та $t_{ir} = 2$ год при $E_e = 12,5$ МеВ. Час охолодження становив $t_c = 50$ с та $t_c = 3$ доби у першому та другому випадках відповідно. Вимірювання спектрів проводилося на γ -спектрометрі, створеному на базі НРGе-детектора. Роздільна здатність спектрометра становила 1,8 кеВ для γ -переходу з $E_{\gamma} = 1332,5$ кеВ у ядрі ⁶⁰Со. Спектри записувалися через кожні 60 с протягом усього часу вимірювання t_m . Ефективність реєстрації γ -квантів даним спектрометром визначалася за допомогою стандартних калібрувальних джерел ^{152,154}Eu, ¹³³Ва та ²⁴¹Am [15].

Для обробки спектрів використовувався пакет програм Winspectrum [19]. Обробка спектрів полягала в надійному визначенні площ під піками повного поглинання від γ -переходів, що виникають при розпадах з ізомерного на основний стан та при β -розпаді основного стану ядра, а також від γ -переходів, що виникають при β -розпаді ядра-попередника з ізобарного ланцюжка. Таке заселення може бути значно більшим за пряме заселення.

На рис. 2 зображено фрагменти схем розпаду досліджуваних ізомерних пар із зазначенням тих

γ-переходів, що використовувалися для ідентифікації розпадів основних та ізомерних станів ⁹⁵Nb, ¹³³Xe та ¹³⁵Xe та ізобарних ядер-попередників. Для визначення заселеностей рівнів ⁹⁵Nb використовувалися переходи з E_{γ} = 756,732, E_{γ} = 235,68, E_{γ} = 765,797; для визначення заселеностей рівнів ¹³³Xe – переходи з E_{γ} = 529,869, E_{γ} = 233,221, E_{γ} = 80,997; для визначення заселеностей рівнів ¹³⁵Xe – переходи з E_{γ} = 1260,416, E_{γ} = 526,551, E_{γ} = 249,767 [17].

У досліджуваних областях апаратурних спектрів декілька піків від у-переходів (від розпаду продуктів реакції фотоподілу) із близькими енергіями при перекриванні не розділяються спектрометром. У таких ситуаціях проводилося визначення площ цих піків шляхом вписування в досліджувану ділянку спектра декількох піків «еталонної» форми. Для задання «еталонної» форми піка використовувався одиночний інтенсивний пік з даного у-спектра, що створюється у-випромінюванням з енергією, близькою до діапазону енергій, де створюється перекриття. Проводився аналіз у-спектрів, що відповідають різним значенням часів охолодження t_с та вимірювання t_m. Характерні фрагменти у-спектрів продуктів фотоподілу 238 U наведено на рис. 3 та 4.

Ізомерні відношення R_у були обчислені за допомогою програмного коду IZOMER [18] як відношення виходів реакцій із заселенням високоспінового та низькоспінового станів $R_{\rm Y} = Y_{\rm high} / Y_{\rm low}$, що задовольняють систему кінетичних рівнянь, яка описує зміну з часом кількості ядер, що утворилися в основному, метастабільному станах та ізобарному ядрі [11, 13]. Для розрахунку використовувалися отримані в експерименті значення площ під піками повного поглинання та табличні значення ймовірностей переходів у досліджуваних ядрах [15]. Відзначимо, що для ядер ¹³³Хе та ¹³⁵Хе ізомерне відношення обчислювалося як $R_{x}(^{135}Xe,^{133}Xe) =$ ⁹⁵Nb $=Y_{11/2^{-}}/Y_{3/2^{+}}=Y_{m}/Y_{g}$, a для ядра $R_{y}(^{95}Nb) = Y_{g/2^{+}}/Y_{1/2^{-}} = Y_{g}/Y_{m}$. Отримані дані ізомерних відношень наведено в табл. 1. Указані в таблиці похибки виміряних ізомерних відношень відповідають статистичним похибкам площ під піками повного поглинання досліджуваних γ-переходів [19].

Рис. 2. Фрагменти схем розпаду ланцюжків ${}^{95}_{40}$ Zr $\rightarrow {}^{95}_{41}$ Nb $\rightarrow {}^{95}_{42}$ Mo (*a*), ${}^{133}_{53}$ I $\rightarrow {}^{133}_{54}$ Xe $\rightarrow {}^{133}_{55}$ Cs (*б*) та ${}^{135}_{53}$ I $\rightarrow {}^{135}_{54}$ Xe $\rightarrow {}^{135}_{55}$ Cs (*b*). Характеристики станів та переходів наведено за даними [17]. Енергії переходів указано в кеВ.

Рис. 3. Фрагменти спектра фотоподілу 238 U (E_e = = 12,5 MeB), що використовувався для обчислення ізомерного відношення 133 Xe та 95 Nb. Збільшені ділянки γ -спектра деталізують області, що використовувалися в розрахунках.

Таблиця 1. Експериментальні значення ізомерних відношень виходів у ядрах-фрагментах ⁹⁵Nb, ¹³³Xe, ¹³⁵Xe у реакціях фотоподілу ²³⁸U

Ізомерна пара	E _e , MeB	$\mathbf{R}_{\mathbf{y}}$, дана робота
^{95m,g} Nb	12,5	0,66(4)
^{133m,g} Xe	12,5	0,34(6)
^{135m,g} Xe	12	0,07(2)

П р и м і т к а. У дужках указано статистичні похибки вимірювань. Похибки, указані в дужках, відносяться до останніх значущих цифр середніх значень.

Обчислення середніх кутових моментів

Для теоретичного розрахунку ізомерних відношень використовувалася розроблена в [13, 19] узагальнена статистична модель Хьюзенги -Ванденбоша [20, 21]. Враховувалася заселеність основного (g) та метастабільного (m) станів досліджуваного ядра (A_f, Z_f) від розпаду ізотопів із масовим числом $A_i = A_f + i$ з більшою кількістю нейтронів $i \le i_m$. Максимальну кількість додаткових нейтронів було обрано відповідно до середньої множинності нейтронів $i_m = 2$.

При обчисленні ізомерних відношень $R_{th} = Y_m / Y_g$ використовувався вираз

$$R_{th} = \frac{\sum_{i=0}^{i_{max}} \sum_{U} \sum_{J} g_{m}^{(i)}(U, J) \cdot P^{(i)}(J) \cdot \varphi^{(i)}(U) \cdot P(A_{i}, Z_{f})}{\sum_{i=0}^{i_{max}} \sum_{U} \sum_{J} g_{g}^{(i)}(U, J) \cdot P^{(i)}(J) \cdot \varphi^{(i)}(U) \cdot P(A_{i}, Z_{f})}.$$
 (1)

Тут $\varphi^{(i)}(U) - \varphi$ ункція розподілу за енергією, обирається у вигляді сходинки $\varphi^{(i)}(U) = 1$ при $U^{(i)}_{\min} \le U \le U^{(i)}_{\max}$ і $\varphi^{(i)}(U) = 0$, при $U \le U^{(i)}_{\min}$ або

Рис. 4. Фрагменти спектра фотоподілу ²³⁸U (E_e = = 12 MeB), що використовувався для обчислення ізомерного відношення ¹³⁵Xe. Збільшені ділянки γ -спектра деталізують області, що використовувалися в розрахунках. Тривалість вимірювання t_m = 6 год, крім γ 526 кеB (див. на рисунку позицію (*a*), де t_m = = 30 хв).

 $U \ge U_{max}^{(i)}$; $g_k^i(U, J)$ – заселеності основного (k = g) та метастабільного (k = m) станів ядра (A_f, Z_f), що відповідають переходам із вильотом γ -квантів та нейтронів зі станів ядер з енергією збудження U та спіном J (в одиницях ħ), розраховуються в коді EMPIRE 3.2 [22] з різним набором параметрів [23, 24]; $P^{(i)}(J)$ – функція розподілу за кутовим моментом; $P(A_i, Z_f)$ – функція розподілу фрагментів поділу за масовим числом обирається як плавна функція А. Оскільки функції розподілів для різних ізотопів одночасно входять у чисельник та знаменник виразу (1) і масові числа A_i знаходяться в малому інтервалі, то $\varphi^{(i)}(U)$ та $P^{(i)}(J)$ вважалися однаковими в різних ізотопах.

У розрахунках враховувався розпад станів із величинами енергії збудження в однаковому інтервалі $\Delta U = 16$ MeB для всіх ізотопів, що відповідає подвійній середній енергії відриву нейтрона $S_n = 8$ MeB ($\Delta U = 2S_n$) і враховує практично всі збуджені стани, які можуть заселяти основний та ізомерний стани досліджуваного ядра (рис. 5 і 6). Мінімальне $U_{min}^{(i)}$ та максимальне $U_{max}^{(i)}$ значення енергії збудження в ядрі-фрагменті (A_i, Z_f), що заселяють g- та m-стани ядра (A_f, Z_f), бралися рівними: $U_{min}^{(i)} = S_i$, $U_{max}^{(i)} = S_i + \Delta U$, де $S_i -$ енергія відділення і нейтронів від ядра (A_i, Z_f), $S_i = \sum_{j=0}^{j=i} S_n^{(j)}$

з $S_n^{(j)}$ для енергії відділення одного нейтрона від ядра (A_f + j, Z_f) і $S_{i=0}$ = 0.

Рис. 5. Імовірності заселення g⁽ⁱ⁾_g (U, J) основного стану ядра ¹³⁵Хе із збуджених станів ізотопів ¹³⁷Хе (*a*) та ¹³⁵Хе (б) залежно від енергії збудження U (в MeB) та спіну J (в одиницях ħ), розраховані за допомогою коду EMPIRE 3.2.

Рис. 6. Імовірності заселення $g_m^{(i)}(U, J)$ ізомерного стану ядра ¹³⁵Хе із збуджених станів ізотопів ¹³⁷Хе (*a*) та ¹³⁵Хе (б) залежно від енергії збудження U та спіну J, розраховані за допомогою коду EMPIRE 3.2.

Для функцій спінового розподілу початкових станів використовувалися такі вирази [13, 19, 23, 24]:

$$P^{(i)}(J) = P^{(i)}(J, \lambda) = (2J+1)\exp(-\lambda J - J(J+1)/2B^{2}_{(i)}).$$
(2)

$$P^{(i)}(J) = P^{(i)}(J,\mu) = (2J+1)exp(-J(J+1)/2(B_{(i)}+\mu)^2).$$
(3)

Параметр В у формулах (2) і (3) обчислювався згідно з моделлю Фермі-газу [25] для сферичних ядер. Параметри λ та μ визначалися з підгонки теоретичних значень ізомерних відношень (1) до експериментальних даних. Після визначення

параметрів у функціях спінового розподілу середній кутовий момент первинного фрагмента (A_f; Z_f) обчислювався за формулою

$$\overline{J} = \sum_{J} J P^{(0)}(J) / \sum_{J} P^{(0)}(J).$$
(4)

Сумування по спіну J у формулах (1) та (4) виконується по цілим значенням $J \ge 0$ для ядер фрагментів поділу з цілими спінами основних станів і напівцілим значенням $J \ge 1/2$ для ядер-фрагментів, в яких спін основних станів напівцілий. Установлено, що для ізотопів, що розглядаються, розрахунки з різними функціями спінового розподілу початкових станів (2) та (3) приводять до майже однакових середніх значень \overline{J} .

Таблиця 2. Середні кутові моменти **J** (в одиницях ħ) досліджуваних уламків фотоподілу ²³⁸U

Ізомерна пара	E _e , MeB	\overline{J}
^{95m,g} Nb	12,5	0,5(5)
^{133m,g} Xe	12,5	3(1)
^{135m,g} Xe	12	1,5(5)

П р и м і т к а. У дужках указано статистичні похибки вимірювань. Похибки, указані в дужках, відносяться до останніх значущих цифр середніх значень.

За вказаним методом розраховано значення середніх кутових моментів первинних уламків

поділу \overline{J} для ядер ⁹⁵Nb, ¹³³Xe та ¹³⁵Xe. Отримані величини наведено в табл. 2.

Обговорення результатів

Експериментальних даних щодо ізомерних відношень для легких уламків фотоподілу отримано відносно мало. Так, для ^{95m,g}Nb ізомерні відношення виміряно лише для реакції фотоподілу на ²³⁸U під дією гальмівних γ -квантів з $E_e = 18$ MeB [14]. У табл. З і 4 наведено значення ізомерних відношень та середніх кутових моментів уламків фотоподілу, отриманих у даній роботі та наведених у літературі.

Таблиця 3. Порівняння ізомерних відношень виходів уламків фотоподілу ²³⁸U досліджуваних ядер (жирним шрифтом) із раніше опублікованими даними

	Гранична енергія ү-квантів Е _е , МеВ			
Ізомерна пара	12 [16]	12,5	16 [10]	18 [14 - 16]
	Значення ізомерного відношення $R_{Y} = Y_{high} / Y_{low}$			
^{95m,g} Nb		0,66(4)		0,67(7)
^{97m,g} Nb	0,73(1)			3,8(6)
^{133m,g} Xe		0,34(6)		1,7(5)
^{135m,g} Xe	0,07(2)		0,22(3)	0,069(7)

П р и м і т к а. Посилання на публікацію подано у квадратних дужках.

Таблиця 4. Порівняння середніх кутових моментів уламків фотоподілу ²³⁸U досліджуваних ядер (жирним шрифтом) з раніше опублікованими даними

	Гранична енергія ү-квантів Е _е , МеВ			
Ізомерна пара	12 [16]	12,5	16 [10]	18 [14 - 16]
	Значення середнього кутового моменту уламку поділу $\overline{\mathbf{J}}$			
^{95m,g} Nb		0,5(5)		
^{97m,g} Nb	1,5(5)			5,1(7)
^{133m,g} Xe		3(1)		
^{135m,g} Xe	1,5(5)		2,8(5)	1,5(5)

Примітка. Посилання на публікацію подано у квадратних дужках.

Із табл. 3 та 4 видно, що значення ізомерних відношень для уламка ¹³³Хе при переході від граничної енергії $E_e = 12,5$ МеВ до $E_e = 18$ МеВ зростає в 5 разів. Значення ізомерного відношення для ^{97m,g}Nb при переході від граничної енергії $E_e = 12$ МеВ до $E_e = 18$ МеВ також суттєво зростає. Це може свідчити про домінуючу роль при $E_e = 18$ МеВ для даного уламка реакцій поділу (γ , nf) ($E_{nop.} \approx 12$ МеВ) [26] або (γ , 2nf) ($E_{nop.} =$ = 16,7 МеВ) [26].

Для ізотопу ¹³⁵Хе спостерігається немонотонна поведінка середніх кутових моментів при зміні енергії γ-випромінювання E_e від 12 до 18 МеВ. У цьому діапазоні енергій значення \overline{J} зростає при зростанні граничної енергії від $E_e = 12$ МеВ до $E_e = 16$ МеВ і зменшується при $E_e = 18$ МеВ. Такі зміни можуть бути пояснені відкриттям додаткового каналу фотоподілу 238 U, а саме відкриттям каналу (γ , 2nf) в околі енергії $E_e = 18$ MeB.

З порівняння значень R_{γ} у парі ізотопів ⁷⁹₅₄Xe¹³³ та ⁸¹₅₄Xe¹³⁵ можна відзначити тенденцію до зменшення значення R_{γ} (з $R_{\gamma}({}^{79}_{54}Xe^{133}) =$ = 0,34(6) до $R_{\gamma}({}^{81}_{54}Xe^{135}) = 0,07(2)$) при наближенні кількості нейтронів до магічного числа 82, що відповідає заповненню оболонки. Аналогічне зменшення ізомерних відношень для ізотопів ксенону спостерігалося в експерименті «Godiva-IV» у реакціях поділу ²³⁵U під дією нейтронів [27] ($R_{\gamma}({}^{81}_{54}Xe^{133}) = 3,92(92)$, $R_{\gamma}({}^{81}_{54}Xe^{135}) =$ = 1,48(34)). При порівнянні R_{γ} у парах ізотопів, в яких значення кількості нуклонів знаходяться далеко від заповнених оболонок, значення R_{γ} практично збігаються, що продемонстровано на прикладі ізотопів ніобію. На думку авторів, дана поведінка може свідчити про вплив оболонкових ефектів на значення заселеностей станів.

Висновки

Проведено експериментальне вимірювання ізомерних відношень виходів ядер ⁹⁵Nb, ¹³³Xe, ¹³⁵Xe при фотоподілі ²³⁸U гальмівними γ -квантами з граничними енергіями $E_e =$ = 12,5 MeB та $E_e = 12$ MeB. Ізомерні відношення були розраховані з урахуванням внеску від розпаду ізобарних ядер у виходи досліджуваних

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. H. Naik, S.P. Dange, R.J. Singh. Angular momentum of fission fragments in low energy fission of actinides. Phys. Rev. C 71 (2005) 014304.
- О.А. Бесшейко, В.А. Желтоножский, И.Н. Каденко, Н.В. Стрильчук. Измерение изомерных отношений в продуктах фотоделения ²³²Th. 36. наук. праць Ін-ту ядерних дослідж. 8 (2002) 46.
- И.Н. Вишневский, В.А. Желтоножский, О.И. Давидовская, А.Н. Саврасов. Исследование фотоделения ²³²Th и ²³⁸U. Изв. РАН. Сер. Физ. 73 (2009) 782.
- H. Thierens et al. Product yields for the photofission of ²³⁵U and ²³⁸U with 25-MeV bremsstrahlung. Phys. Rev. C 14 (1976) 1058.
- 5. E. Jacobs et al. Product yields for the photofission of ²³⁸U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung. Phys. Rev.C 19 (1979) 422.
- E. Jacobs et al. Product yields for the photofission of ²³⁵U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung. Phys. Rev. C 21 (1980) 237.
- H. Thierens, B. Proot, D. De Frenne, E. Jacobs. Independent isomeric yield ratio of ¹³⁴I in the photofission of ²³⁵U and ²³⁸U. Phys. Rev. C 25 (1982) 1546.
- D. De Frenne et al. Independent isomeric yield ratios and primary angular momenta in the photofission of ^{235,238}U with 12 - 30-MeV bremsstrahlung. Phys. Rev. C 29 (1984) 1777.
- О.А. Бесшейко и др. Изучение изомерных отношений на ядрах-продуктах фотоделения ²³⁸U и ²³⁷Np. 36. наук. праць ін-ту ядерних дослідж. 13 (2004) 17.
- О.А. Бесшейко и др. Изомерные отношения и средние угловые моменты для продуктов фотоделения ²³⁸U и ²³⁷Np. Изв. РАН. Сер. Физ. 69 (2005) 658.
- И.Н. Вишневский, В.А. Желтоножский, О.И. Давидовская, А.Н. Саврасов. Исследование фотоделения ²³⁵U и ²³⁹Pu. Изв. РАН. Сер. Физ. 74 (2010) 538.
- И.Н. Вишневский, В.А. Желтоножский, А.Н. Саврасов. Исследование фотоделения ²³⁷Np и ²⁴¹Am. Изв. РАН. Сер. Физ. 76 (2012) 1017.
- И.Н. Вишневский и др. Изомерные отношения и средние угловые моменты фрагментов фотоделения ²³⁵U, ²³⁷Np и ²³⁹Pu. Ядерна фізика та енергетика 16 (2015) 5.

нуклідів. Визначено середні кутові моменти досліджуваних фрагментів поділу в рамках статистичної моделі розпаду. Результати вимірювань указують на можливість впливу оболонкових ефектів та відкриття (γ , nf) і (γ , 2nf) каналів поділу на значення ізомерних відношень та середніх кутових моментів первинних фрагментів поділу.

Співавтори (В.А.П., О.М.Г., К.М.С.) висловлюють вдячність за підтримку МАГАТЕ (ІАЕА, Vienna) у рамках дослідницького проекту ІАЕА CRP No.F41032.

- I.N. Vishnevsky et. al. Isomeric yields ratios of ²³⁸U photofission fragments at end-point energy of bremmsstrahlung photons about 18 MeV. In: Abstracts of the LXIV Intern. Conf. on Nuclear Physics "Nucleus 2014" (Minsk, July 01-04, 2014) (Minsk, 2014) p. 88.
- В.О. Желтоножский та ін. Ізомерні відношення та середні кутові моменти первинних фрагментів ⁹⁷Nb при фотоподілі ²³⁵U та ²³⁸U. Укр. фіз. жур. 62 (2017) 285.
- И.Н. Вишневский и др. Исследование фрагментов фотоделения ²³³U и ²⁴¹Am. Ядерна фізика та енергетика 15 (2014) 215.
- 17. R.B. Firestone, V.S. Shirley, C.M. Baglin. Table of isotopes CD-ROM. Eight ed. (1996).
- Н.В. Стрільчук. Керівництво користувача. ІЯД НАН України. Приватне спілкування.
- I.N. Vishnevsky et. al. Isomer yield ratios of ¹³³Te, ¹³⁴I, ¹³⁵Xe in photofission of ²³⁵U with 17 MeV bremsstrahlung. Ядерна фізика та енергетика 15 (2014) 111.
- 20. R. Vandenbosch, J.R. Huizenga. *Nuclear Fission* (New York, Academic, 1973).
- H. Warhalek, R. Vandenbosh. Relative crosssections for formation of the shielded isomeric pair ^{134m}Cs and ¹³⁴Cs in medium energy fission. J. Inorg. Nucl. Chem. 26 (1964) 669.
- 22. M. Herman et al. EMPIRE: nuclear reaction model code system for data evaluation. Nuclear Data Sheets 108 (2007) 2655; http://www.nndc.bnl.gov/empire
- 23. R. Capote et al. Reference Input Parameter Library (RIPL-3). Nuclear Data Sheets 110 (2009) 3107; https://www-nds.iaea.org/RIPL-3/
- 24. V.A. Plujko, R. Capote, O.M. Gorbachenko. Giant dipole resonance parameters with uncertainties from photonuclear cross sections. Atomic Data and Nuclear Data Tables 97 (2011) 567
- 25. T. Belgya et al. Handbook for calculations of nuclear reaction data, RIPL-2. IAEA-TECDOC-1506 (Vienna, IAEA, 2006).
- 26. https://www-nds.iaea.org/exfor/exfor.htm
- G.P. Ford, K. Wolfsberg, B.R. Erdal. Independent yields of the isomers of ¹³³Xe and ¹³⁵Xe for neutroninduced fission of ²³³U, ²³⁵U, ²³⁸U, and ^{242m}Am. Phys. Rev. C 30 (1984) 195.

И. Н. Вишневский¹, В. А. Желтоножский¹, А. Н. Саврасов^{1*}, В. А. Плюйко², А. Н. Горбаченко², Е. Н. Солодовник²

¹ Институт ядерных исследований НАН Украины, Киев, Украина ² Киевский национальный университет имени Тараса Шевченко, Киев, Украина

*Ответственный автор: asavrasov@kinr.kiev.ua

СРЕДНИЕ УГЛОВЫЕ МОМЕНТЫ ФРАГМЕНТОВ ФОТОДЕЛЕНИЯ ²³⁸U ТОРМОЗНЫМ ИЗЛУЧЕНИЕМ

Основываясь на результатах экспериментов по фотоделению ²³⁸U тормозными γ -квантами, измерены изомерные отношения выходов ядер ⁹⁵Nb и ¹³³Xe при граничных энергиях $E_e = 12,5$ МэВ и ¹³⁵Xe при $E_e = 12,0$ МэВ. Изомерные отношения были получены с учетом вклада от распада изобарных ядер у выходы исследуемых нуклидов. Определены средние угловые моменты фрагментов деления в рамках статистической модели распада.

Ключевые слова: фотоделение, изомерные отношения выходов, средние угловые моменты фрагментов деления.

I. M. Vyshnevskyi¹, V. O. Zheltonozhsky¹, A. M. Savrasov^{1*}, V. A. Plujko², O. M. Gorbachenko², K. M. Solodovnyk²

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine ² Kyiv Taras Shevchenko National University, Kyiv, Ukraine

*Corresponding author: asavrasov@kinr.kiev.ua

AVERAGE ANGULAR MOMENTA OF THE FRAGMENTS IN ²³⁸U PHOTOFISSION WITH BREMSSTRAHLUNG

Based on ²³⁸U photofission experiments with the bremsstrahlung photons, the isomeric yield ratios were measured for ⁹⁵Nb and ¹³³Xe nuclei at the end-point energy $E_e = 12.5$ MeV, and ¹³⁵Xe nuclei at $E_e = 12.0$ MeV. Experimental values of isomeric yield ratios were obtained taking into account the contribution from beta-decay of isobaric nuclei in yields of investigated isotopes. Average angular momenta of investigated fission fragments were determined using the statistical model of decay.

Keywords: photofission, isomeric yields ratios, mean angular momenta of fission fragments.

REFERENCES

- 1. H. Naik, S.P. Dange, R.J. Singh. Angular momentum of fission fragments in low energy fission of actinides. Phys. Rev. C 71 (2005) 014304.
- O.A. Bezsheyko, V.A. Zheltonozhsky, I.N. Kadenko, N.V. Strilchuk. Measurement of isomeric ratios in ²³²Th photofission products. Zbirnyk Naukovykh Prats Instytutu Yadernykh Doslidzhen 8 (2002) 46 (Rus)
- I.N. Vyshnevskyi, V.A. Zheltonozhskyj, O.I. Davidovskaya, A.N. Savrasov. Investigation of the ²³²Th and ²³⁸U photofission. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya 73 (2009) 782. (Rus)
- H. Thierens et al. Product yields for the photofission of ²³⁵U and ²³⁸U with 25-MeV bremsstrahlung. Phys. Rev. C 14 (1976) 1058.
- E. Jacobs et al. Product yields for the photofission of ²³⁸U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung. Phys. Rev. C 19 (1979) 422.
- 6. E. Jacobs et al. Product yields for the photofission of ²³⁵U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung. Phys. Rev. C 21 (1980) 237.
- H. Thierens, B. Proot, D. De Frenne, E. Jacobs. Independent isomeric yield ratio of ¹³⁴I in the photofission of ²³⁵U and ²³⁸U. Phys. Rev. C 25 (1982) 1546.

- D. De Frenne et al. Independent isomeric yield ratios and primary angular momenta in the photofission of ^{235,238}U with 12 - 30-MeV bremsstrahlung. Phys. Rev. C 29 (1984) 1777.
- O.A. Bezshyyko et al. Isomeric ratio study of photofission fragments of ²³⁸U and ²³⁷Np. Zbirnyk Naukovykh Prats Instytutu Yadernykh Doslidzhen 13 (2004) 17 (Rus)
- O.A. Bessheiko et al. Isomeric ratios and mean angular momenta for ²³⁸U and ²³⁷Np photofission products. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya 69 (2005) 745. (Rus)
- I.N. Vishnevskii, O.I. Davidovskaya, V.A. Zheltonozhskii, A.N. Savrasov. Investigation of ²³⁵U and ²³⁹Pu photofission. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya 74 (2010) 500. (Rus)
- I.N. Vishnevskii, V.A. Zheltonozhskii, A.N. Savrasov. Investigating ²³⁷Np and ²⁴¹Am photofission. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya 76 (2012) 901. (Rus)
- I.M. Vyshnevskyi et al. Isomeric yield ratios and mean angular momenta of photofission fragments of ²³⁵U, ²³⁷Np and ²³⁹Pu. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 16 (2015) 5. (Rus)
- 14. I.N. Vishnevsky et. al. Isomeric yields ratios of ²³⁸U

photofission fragments at end-point energy of bremmsstrahlung photons about 18 MeV. In: Abstracts of the LXIV Intern. Conf. on Nuclear Physics "Nucleus 2014" (Minsk, July 01-04, 2014) (Minsk, 2014) p. 88.

- V.O. Zheltonozhskyi et al. Isomer ratios and mean angular momenta of primary ⁹⁷Nb fragments at ²³⁵U and ²³⁸U photofission. Ukr. J. Phys. 62 (2017) 285. (Ukr)
- I.M. Vyshnevskyi et al. Investigation of ²³³U and ²⁴¹Am photofission fragments. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 15 (2014) 215. (Rus)
- 17. R.B. Firestone, V.S. Shirley, C.M. Baglin. Table of isotopes CD-ROM. Eight ed. (1996).
- 18. N.V. Strilchuk. The IZOMER manual. INR NASU. private communication.
- I.N. Vishnevsky et al. Isomer yield ratios of ¹³³Te, ¹³⁴I, ¹³⁵Xe in photofission of ²³⁵U with 17 MeV bremsstrahlung. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 15 (2014) 111.
- 20. R. Vandenbosch, J.R. Huizenga. *Nuclear Fission* (New York, Academic, 1973).

- H. Warhalek, R. Vandenbosh. Relative crosssections for formation of the shielded isomeric pair ^{134m}Cs and ¹³⁴Cs in medium energy fission. J. Inorg. Nucl. Chem. 26 (1964) 669.
- 22. M. Herman et al. EMPIRE: nuclear reaction model code system for data evaluation. Nuclear Data Sheets 108 (2007) 2655; http://www.nndc.bnl.gov/empire/.
- 23. R. Capote et al. Reference Input Parameter Library (RIPL-3). Nuclear Data Sheets 110 (2009) 3107; https://www-nds.iaea.org/RIPL-3/
- 24. V.A. Plujko, R. Capote, O.M. Gorbachenko. Giant dipole resonance parameters with uncertainties from photonuclear cross sections. Atomic Data and Nuclear Data Tables 97 (2011) 567.
- 25. T. Belgya et al. Handbook for calculations of nuclear reaction data, RIPL-2. IAEA-TECDOC-1506 (Vienna, IAEA, 2006).
- 26. https://www-nds.iaea.org/exfor/exfor.htm
- G.P. Ford, K. Wolfsberg, B.R. Erdal. Independent yields of the isomers of ¹³³Xe and ¹³⁵Xe for neutroninduced fission of ²³³U, ²³⁵U, ²³⁸U, and ^{242m}Am. Phys. Rev. C 30 (1984) 195.

Надійшла 13.12.2017 Received 13.12.2017