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THE COULOMB SUM OF 7Li 
 

The experimental values of longitudinal response function of the 7Li nucleus have been obtained and these results 

have been used as the basis to find the Coulomb sum values at momentum transfers ranging from 0.55 to 1.625 fm-1. 

The obtained experimental Coulomb sum values have been used to determine the total Coulomb energy of the 7Li 

nucleus. The result of the comparison of the Coulomb energy for the 7Li nucleus with the Coulomb energies for the 6Li 

and 4He nuclei a) is consistent with the paradox (revealed in the elastic electron scattering experiment) that the 7Li rms 

charge radius is smaller than the one of the 6Li nucleus; b) leads to the conclusion that, within the framework of the 

two-cluster model of the 7Li nucleus ( + t), the size of the -cluster should be larger than the one of the 4He nucleus.  
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1. Introduction 
 

The Coulomb energy is the part of nuclear energy 

that arises as a result of electrostatic (Coulomb) 

interaction between intranuclear protons. This inte-

raction is one or two orders of magnitude weaker than 

the nuclear interaction, and yet, its role in the nuclear 

structure and nuclear reactions is considerable. For 

example, it is just the Coulomb interaction that 

determines the maximum size of atomic nuclei, or, in 

other words, the maximum number of protons that can 

be present in the stable nucleus.  

The Coulomb energy has been investigated in a 

good many experiments. Based on the hypothesis of 

the isotopic invariance of nuclear forces, the 

investigators measured the Coulomb energy diffe-

rences of mirror nuclei (e.g., see survey [1]). 

However, the experimental total Coulomb energy 

values (Ecoul) were obtained only for the nuclei 6Li [2, 

3], 7Li [3], 12C [4] and 4He [5]. A small number of 

these values is explained by the fact that for 

determining Ecoul it is necessary to know the Coulomb 

sum values (SL(q)) of the nucleus under study at 

3-momentum transfers q = 0.8 ÷ 1.8 fm-1. However, 

the determination of SL(q) values appears to be a 

complicated and time consuming problem. So far, the 

experimental SL(q) values at q < 2 fm-1 have been 

obtained for 10 nuclei apart from lithium isotopes. 

These are the results of work performed at 

laboratories of Saclay, Bates and KIPT. The Saclay 

and Bates teams carried out the measurements mainly 

at q ≥ 1.5 fm-1, while the Kharkiv team – at 

q ≤ 1.5 fm-1. 1 

                                                 
1 The given references refer to the works carried out 

after 1976. The earlier data of the works on the Coulomb 

sums, not mentioned here, had a relatively low accuracy, 

though they much contributed to gaining the experience 

for subsequent measurements. 

Previously, we found the SL(q) values for lithium 

isotopes at q = 0.750 ÷ 1.625 fm-1 [6 - 8]. In the 

present work, we have extended the range of 

momentum transfers by estimated SL(q) values for 
7Li to q = 0.55 and 0.65 fm-1. As it will be shown 

below, the obtained array of experimental SL(q) 

values has permitted us to determine the Coulomb 

energy of 7Li to a higher accuracy than that given in 

[2 - 5]. However, the most accurate determination of 

the 7Li Coulomb energy by itself is not the ultimate 

goal of the present work.  

The nuclei of lithium isotopes are strongly 

clusterized. The difference between the types of 

their clusterization may probably be the reason why 

the charge radius of the 7Li nucleus is smaller than 

the one of the 6Li nucleus. This paradox was first 

revealed in [9], where the ratio of rms charge radii of 

lithium isotopes was found to be 

<r2>1/2(7Li)/<r2>1/2(6Li) = 0.948 ± 0.008. Conside-

ring that the Coulomb energy of the nucleus is 

dependent on its clusterization (see [2]), it would be 

of interest to compare the Coulomb energies of the 
7Li, the 6Li and the 4He nuclei.  

 

2. Equations and formulae 
 

The experimental determination of the Coulomb 

energy of nucleus is based on the equation for Ecoul 

taken from [10], which relates Ecoul to the data 

measured in the experiments on electron scattering 

by nuclei, viz., the squared charge form factor of the 

nuclear ground state Fel
2(q) (hereinafter referred to 

as nuclear form factor) and the Coulomb sum of the 

nucleus SL(q). It should be noted that this equation is 

model-free, i.e., it is independent of any assumptions 

about the structure of the nucleus under study. The 

Ecoul equation can be written as  
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where e – the elementary charge; M and GE,p(q
2) – 

the mass and electrical form factor of the proton, 

respectively; Z – the charge number of the nucleus.  

The squared charge form factor of the nuclear 

ground state is defined as 
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respectively, the elastic electron-nucleus scattering 

cross-section and the Mott cross-section, i.e., the 

cross-section for electron scattering by the point 

spinless unit charge with infinite mass; Е0 – the 

initial energy of electron scattered through the angle 

θ; 201 2 sin
2

E

AM


    – the kinematic correction; А 

– the atomic mass of the nucleus. 

In this paper, the symbol q denotes the effective 

3-momentum transfer 
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where Eeff = E0 + 1.33 Ze2 /r21/2 – the effective 

energy;  – the energy transfer to the nucleus. In the 

expression for Eeff the second term takes into 

account the nuclear electrostatic field effect on the 

incident electron [11]. 

The Coulomb sum has the form 
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where the lower limit of the integral el
+ shows that 

the range of integration begins from the peak of 

elastic electron scattering by the nucleus, but the 

peak itself does not enter into the integral; the 

denominator of the integrand (4) is given by  
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where q – the 4-momentum transfer to the nucleus, 

its square being written as q
2 = q2  2; N – the 

neutron quantity in the nucleus; GE,n(q
2) – the 

electrical neutron form factor; RL(q, ) – the 

longitudinal response function, which together with 

the transverse response function RT(q, ) represents 

the expansion of the double-differential cross-

section for electron-nucleus scattering 

d2(, E0, )/dd by the known expression [12], 

which can be written as 
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The given set of formulas demonstrates the 

relationship between the quantities used in Eq. (1) 

and the cross-sections measured in the electron-

nucleus scattering experiments.   
 

3. Experimental Coulomb sum values 

of the 7Li nucleus 
 

It follows from Eq. (1) that the Coulomb energy 

of the nucleus is the function of three physical 

quantities, and its value can be found from their 

experimental values. These quantities are: i) the 

nuclear form factor Fel(q) of 7Li (was measured in 

[9, 13]); ii) the electrical proton form factor GE,p(q
2) 

(the recent measured data can be found in [14]); iii) 

the Coulomb sum SL(q) of 7Li (was measured in [6] 

at q = 1.250 ÷ 1.625 fm-1, and in [8] at q =  

= 0.750 ÷ 1.125 fm-1). It should be noted that the 

accuracy of Ecoul calculation is to a large extent 

dependent on the precision and range of 

experimental SL(q) values. Therefore, it was carried 

out a thorough re-processing of all our experimental 

data on 7Li nucleus. For the purpose, we used 

improved data processing techniques developed by 

us in recent years. As a result, experimental SL(q) 

values have been obtained in a wider range of 

momentum transfers, and these quantities have been 

determined with higher accuracy than earlier ones. 

The 7Li measurements were performed using the 

spectrometer SP-95 of the KIPT electron linear 

accelerator LUE-300. The experimental facility and 

the measurement technique have been described in 

detail in a number of publications (e.g., see [7, 15, 

16]). Therefore, we mention here only the 7Li 

spectrum measurement conditions.  

As it follows from Eq. (5), the determination of 

response functions from the spectra of scattered 
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electrons calls for the measurements at different 

scattering angles and initial electron energies. Thus, 

the measurements on 7Li were carried out in  

the following ranges:  = 34.2 ÷ 160, Е0 =  

= 104 ÷ 259 MeV. A total of 21 spectra were 

measured on 7Li nuclei; and 28 spectra - on 12C 

nuclei. The last spectra were necessary for 

normalization of the measured data for 7Li. The 

processing of the data has given the longitudinal 

response function values of 7Li (Fig. 1) at eight 

3-momentum transfers: q = 0.750, 0.875, 1.000, 

1.125, 1.250, 1.375, 1.500, 1.625 fm-1. Substituting 

these experimental RL(q, ) into Eq. (4), we find the 

Coulomb sum values.  
 

                        RL(q, )10-4, MeV-1                                        RL(q, )10-4, MeV-1 

 
 

Fig. 1. Experimental longitudinal response function of 7Li. 

The vertical arrows indicate the peak position of elastic electron scattering by the nucleus. 
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4. Experimental data and processing techniques 
 

We shall mention briefly the data processing 

procedures, which we have developed or modified in 

the recent years. These methodical developments 

were applied in the last revision of the measured 

data processing and, partially, in the work [8]. 

- The background from the (e+e-)-pair 

photoproduction by the target has been considered. 

The computation program for the effect has been 

written and tested. The computation by the program 

has demonstrated the negligibly small contribution 

of the process to our measurement results [17].  

- A new computation program, which makes use 

of the whole cumbersome mathematical apparatus of 

[18, 19], has been written for radiative correction 

(rad. correction) of experimental spectra. That 

makes the rad. correction computations as accurate 

as those performed in the best foreign laboratories. 

Besides, we have analyzed the possibility of using 

the “equivalent radiator” approximation for 

calculating the radiation tail of the elastic scattering 

peak [20]. The application of the new rad. correction 

program to our data has left practically unchanged 

the previous SL(q) values measured at q ≥ 1 fm-1, 

whereas at lower momentum transfers the variations 

in SL(q) did not exceed the half of the experimental 

error. 

- All investigations, where the response functions 

are derived from the experimental cross-sections, by 

all means include the data interpolation (e.g., see [7, 

21]). We made an attempt to estimate the 

uncertainty, which may be introduced by this 

procedure to the calculated SL(q) values. For this 

purpose, while processing the data in the present 

work, we have used four different variants of 

interpolation, and have considered the caused-by-

the-technique spread in the SL(q) values at different 

momentum transfers. As a result, it was found that 

the interpolation-induced uncertainty could be 

estimated to be 0.7 % of the SL(q) values. 

- The expression for the Coulomb sum includes 

the squared electrical proton form factor GE,p
2(q2). 

For the purpose of its calculation, the dipole formula 

and the estimation from [23] were used in [6] and in 

[7, 8], respectively. In the present work, we have 

used the GE,p
2(q2) values taken from [14] being the 

last work on the subject. In the range of q = 0.5 ÷ 

÷ 1.6 fm-1, the difference between the GE,p
2(q2) 

values by the dipole formula and from [14] and [23] 

reaches several percent. In [14], Bernauer et al. have 

indicated the error corridor for the GE,p
2(q2) values, 

which shows that at the considered momentum 

transfers the value of GE,p
2(q2) varies from 0.2 to 

0.6 %.  

- The excitation energy of the first level of 7Li 

amounts to 0.47 MeV. In the measured spectra this 

level was not separated from the elastic scattering 

peak, and in all our previous publications its 

contribution to SL(q) was neglected. In the present 

work, the contribution from this level (about 2 %) 

was taken from the measurements of [9], and was 

included in the SL(q) values.  

 

   SL(q) 

 
q, fm-1  

Fig. 2. Experimental Coulomb sum values of 7Li. The 

error bars at the points represent the sum of systematic and 

statistical uncertainties. The systematic uncertainties are 

shown by a wide cap on the line of the summary error bar. 

Fig. 3. Extrapolation of experimental RT/RL ratio values at 

the QES peak maximum to q = 0.55, 0.65 fm-1. The 

arrows show the momentum transfer value, to which the 

extrapolation is carried out, and nearby, the obtained 

RT/RL ratio values are. 
 

As a result of the performed revisions, the 

Coulomb sum values of 7Li have changed only 

slightly. Their final values are presented in Fig. 2. 

The same Figure shows the estimated SL(q) values at 
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q = 0.55 and 0.65 fm-1. These values were obtained 

from the measurements at Е0 = 160 MeV and  = 

= 40.5 and 49, i.e., at the conditions when the 

contribution from the longitudinal response function 

prevails in the measured cross-sections. Since the 

accelerator LUE-300 could not provide a stable 

electron beam of energy below 100 MeV, the 

spectrum measurements at large scattering angles 

and at q < 0.75 fm-1 were impossible to perform. 

Therefore, the RT(q, ) data, required for deter-

mining the RL(q, ) values, were derived from the 

extrapolation of the RT/RL ratios determined at 

higher momentum transfers (Fig. 3). The obtained in 

this way SL(q) values exhibit moderate accuracy, 

characterized by ~ 10 % errors.  
 

5. Data analysis with consideration 

of the form factor of the 7Li ground state 
 

The experimental values of Fel
2(q) for the 7Li 

nucleus were reported in the published papers [9, 

13]. However, those form factors were obtained 

about 50 years ago, and they correspond to the 

equipment capabilities and data processing 

experience of that time. Therefore, when turning to 

the data of [9, 13], their revision and, possibly, some 

correction should be made. In view of this, we have 

analyzed the works [9, 13], and on the basis of the 

analysis carried out, made the following corrections 

for the mentioned data. 

First. The momentum transfers, at which the 

experimental form factors had been obtained in 

those works, in the present work were transformed 

by using expression (3) into the effective momentum 

transfers.  

Secondly. Since the weak point in many works on 

processing of electron scattering experiments lay in 

low accuracy of data normalization (data absolu-

tization), it was necessary to verify the normali-

zation of the form factors under discussion, and in 

case of necessity to renormalize the data. The 

realization of this procedure is based on the 

definition and properties of the form factor as a 

physical quantity. Thus, the form factor of the 

nuclear ground state corresponds to the condition 

that at q  0, Fel
2(q) tends to 1. Do the experimental 

form factors comply with this condition? Let us 

make the f (ai, q) function with the variable 

parameters ai, and which corresponds to the above-

mentioned condition, to fit the experimental data. If 

these data have been normalized incorrectly, then 

the function, which approximates their, at q → 0 will 

tend to a certain number other than unity. Whereas 

the function f (ai, q), being at q = 0 “bound” to unity, 

will be “skewed” at its fitting to those data, thereby 

deteriorating the minimum χ2 value.  

Let us take the function  = k f (ai, q) with the free 
parameters k, ai and fit it to the experimental Fel

2(q). 
The free parameter k, removes the requirement (q = 
= 0) = 1. If this fit gives us k ± k = 1, it means that 
the function f (ai,q) approximates the data, which have 
been normalized correctly to an accuracy of k/k. If, 
however, we have k ± k  1, then with the use of this 
parameter we can renormalize the data, and their new 
values will be Fel

2(q) = Fel
2(q)/k. 2 

As functions that can be used to approximate the 

experimental form factors, the authors of work [13] 

have used f1(ai, q), i.e., the expression corresponding 

to a simplified harmonic-oscillator shell model, and 

also, f2(ai, q) being the expansion in powers of q2. 

We also made use of these expressions in order to 

calculate the parameters k1 and k2 in the two cases, 

respectively. As a result, we obtained k1 = 0.936 ± 

± 0.011 and k2 = 0.948 ± 0.012. Using the arithmetic 

mean value of k1 and k2, we have renormalized the 

experimental nuclear form factors and the curve that 

approximated them. The data from [9] were 

corrected in a similar manner. Fig. 4 shows the form 

factors obtained in this way, and the function 

describing them. It can be seen that for q getting 

closer to 2 fm-1, the form factor is practically set to 

zero. This can be verified numerically: the integral 

of the form factor from q = 0 to q = 2 fm-1 

increments its value in the region q = 0 ÷ 6 fm-1 by 

710-4 of its magnitude. 
 

 
 

Fig. 4. Subintegral function of the first integral in Eq. (1) 

after data renormalization. Fel(q) is the ground-state form 

factor of 7Li. Open circles show the data from [13], full 

circles – data from [19]. 

                                                 
2 Unlike paper [9], the authors of work [13] applied a 

similar method of finding the normalization factors. 

However, the use of these factors without applying of the 

effective momentum transfers may introduce the error of 

several percent into the integral I1. 
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On minimization of 2, besides the values of 

variable parameters ai, their errors are also found, 

ai. Hence, the statistical error of the integral will be 
 

  
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As regards the systematic inaccuracy of the 

integral, it can be estimated only proceeding from 

the difference between the values of the k1 and k2 

parameters, or from the difference between the 

integrals over the functions f1 and f2.  

Then, using the functions that approximate the 

renormalized form factor values, we calculate the 

integral I1 from the first component of Eq. (1). 

Considering the insignificance of the contribution to 

the integral I1 from the bracketed multiplier that 

enters into its subintegral function, all the aforesaid 

about the integral without the brackets can be 

considered as referring to the integral I1. As a result, 

we find the numerical value of the first component 

of Eq. (1), and multiplying by e2/ we transform it to 

the MeV units 
 

I1 = 2.770 ± 0.036 ± 0.014 MeV. 
 

Here, the first uncertainty is statistical, the second 

one is systematic. Hereafter, the other numerical 

results will be presented in the same form.   
 

6. The second integral of the equation 

for the nuclear Coulomb energy 
 

The subintegral functions of the integral I2 from 

Eq. (1) can be represented in the form as shown in 

Fig. 5. 
 

 
Fig. 5. Subintegral function of the second integral in 

Eq. (1). The shaded area between the upper solid line and 

the dashed line passing through the histogram 

corresponds to the integral value. The uncertainties at the 

experimental values are statistical. 

In this representation, the integral value is 

determined by the shaded area between the functions 

A(q) = ZGE,p
2(q2) and B(q) = ZGE,p

2(q2)SL(q). It is 

evident from the Figure that the upper limit of 

integral is determined by the point, where these two 

functions converge, i.e., at q = 1.1 fm-1.  

For the integral over the function A(q), which we 

denote by IA , the values of the form factors GE,p(q
2) 

and GE,p(q
2) are taken from [14]. As a result, we 

obtain 
 

IA = 1.3347 ± 0.0053 MeV. 
 

We represent the integral over the function B(q) 

(denoted by IB) as the histogram area, where the 

width of the bins are not the same (see Fig. 5). The 

width of the i-th bin is designated by Di, and the 

statistical uncertainty of SL(qi) is indicated by 

statSL(qi). As a result, the integral and its statistical 

uncertainty statIB will take the form 
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As may be seen from Fig. 5, at q < 0.5 fm-1, 

where the histogram bin i = 1 should be, there are no 

experimental data. It may be inferred from the 

Figure that with decrease in the momentum transfer, 

the SL(q) value also rapidly decreases, and it can be 

extrapolated to lower momentum transfers. 

However, since the Coulomb sum describes nuclear 

reactions, but at q = 0 there can be no such reactions, 

then it is clear that SL(0) = 0. So, if using this value, 

the function SL(q) can be interpolated rather than 

extrapolated, and this should give a more exact 

result.  

Nine different functions within a few ranges of 

momentum transfers (from q = 0 ÷ 0.875 fm-1 up to 

q = 0 ÷ 1.125 fm-1) were investigated with the aid of 

the software package Origin Pro 8.5. Here, both the 

χi
2 value per degree of freedom and the momentum 

transfer band width, at which the χi
2 value was 

minimized, served as the criteria in selecting the 

optimum interpolation function. In this approach, the 

Boltzmann (B(q)) and the Logistic (L(q) functions 

were chosen: the acceptable i
2 value being in the 

maximum fit range of q = 0 ÷ 1.125 fm-1. It is 

interesting that these functions are very close at  

q = 0.550 ÷ 1.125 fm-1, but at q = 0.25 fm-1 they 

become strongly divergent (see Fig. 5). In order to 

reveal the influence of SL(q) values at q = 0.55 and 

0.65 fm-1 on the interpolation some fittings were 

performed, where the error bars of these two points 
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were varied by a factor of 1.5. First, the error bars 

were increased, then the error bars were decreased. 

In both cases, the effect on the fit result was 

negligible. 

Eventually, the midline between the Boltzmann 

function and the Logistic function was taken as the 

line of interpolation, and the functions themselves 

were taken for the error corridor at q < 0.5 fm-1. In 

the problem under consideration, the area under the 

function SL(q) was required on the interval q = 0 ÷ 

÷ 0.5 fm-1. Therefore, we took the arithmetic mean 

value of the integrated Logistic and Boltzmann 

functions on this interval as the area of the first 

histogram bin S1. The error of the obtained value 

was about 0.16S1. After substitution of the data into 

Eq. (6) we find 
 

IB = 0.493 ± 0.012 ± 0.012 MeV. 
 

Since the integral I2 = IA – IВ, then we have 
 

I2 = 0.842 ± 0.013 ± 0.012 MeV, 
 

Ecoul = 1.928 ± 0.038 ± 0.026 MeV. 
 

7. Discussion and conclusions 
 

For the analysis of the results of the present study 

we need the Coulomb energy data for the 7Li 

nucleus, and also, for 6Li and 4Не nuclei. These data 

are given in the Table.  
 

Nucleus Ecoul, MeV I1, MeV I2, MeV 
7Li 1.928 ± 0.064 2.770 ± 0.050 0.842 ± 0.025 
6Li* 1.60 ± 0.10 2.45 ± 0.05 0.85 ± 0.09 
4He** 1.02 ± 0.10 1.98 ± 0.08 0.96 ± 0.06 

 

* [2, 3]. 

** [5], more precise in [23, page 215]. 
 

1. The Coulomb energy of nucleus is the higher 

the smaller are the interproton distances. So, the 

ratio Ecoul(
7Li)/Ecoul(

6Li) = 1.205 ± 0.085 is in 

complete concordance with the fact that the nucleus 
7Li is smaller than the nucleus 6Li. The same 

conclusion has followed from the experimental data 

on elastic electron scattering by the nuclei of lithium 

isotopes [9]. 

2. In the consideration of the research results 

based on Eq. (1), not only the calculated total 

Coulomb energy Eсoul, but also the numerical values 

of the integrals I1 and I2 entering into the equation 

are of importance. 

Physically, the integral I1 is the Coulomb energy 

of the electric charge, the spatial distribution of 

which is displayed by the form factor of the nuclear 

ground state. This is the Coulomb energy, which is 

generally attributed to the atomic nucleus, as it was 

first done in the liquid-drop nuclear model and, with 

time, was refined through the introduction of more 

realistic models of charge distribution in the nucleus. 

The physical significance of the integral I2 is the 

Coulomb energy decrease due to the wave functions 

overlapping of the protons that constitute the 

nucleus. In Eq. (1), this integral can be considered as 

a correction that takes into account the influence of 

mutual arrangement of protons in the nucleus on the 

Coulomb energy of this nucleus. 
7Li shows a high degree of clusterization and 

consists of α- and t-clusters, with the spacing 

between them greater than the distance between 

protons in the α-cluster. Therefore, we can assume 

that the integral I2 of the 7Li nucleus is completely 

determined by the overlap of the wave functions of 

the protons belonging to the -cluster.  

3. The value of the integral I2 determines the 

degree of the wave functions overlapping of the two 

protons, and it is the larger, than smaller distance 

between these protons. Therefore, if the integral I2 in 

the equation for 4He differs from the integral I2 for 

the case of the 7Li nucleus, this indicates that the 

distance between protons in the 4He nucleus and  

in the -cluster belonging to 7Li also differs. Let  

us compare the experimental values of I2: 

I2(
7Li)/I2(

4He) = 0.87 ± 0.06. Thus, the obtained ratio 

indicates that the distance between protons in the -

cluster is greater than in the 4He nucleus. This means 

that, within the two-cluster consideration of the 7Li 

nucleus ( + t), the size of the -cluster should be 

larger than that of the 4He nucleus.  

4. The 6Li nucleus is also strongly clusterized, 

and comprises the α-cluster, therefore it must be 

supposed that in this case also the integral I2 in the 

equation Ecoul is determined by protons of the -

cluster. However, a more detailed consideration of 

the case of the 6Li nucleus is difficult due to the 

large errors in the experimental values of Ecoul and I2 

of this nucleus. 
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КУЛОНОВА СУМА ЯДРА 7Li 
 

Отримано експериментальні значення поздовжньої функції відгуку ядра 7Li та на їхній базі знайдено 
значення кулонової суми в діапазоні переданих імпульсів від 0,550 до 1,625 фм-1. Використовуючи знайдені 
значення кулонової суми, було визначено повну кулонову енергію ядра 7Li. Результат порівняння кулонової 
енергії ядра 7Li з кулоновими енергіями ядер 6Li та 4He а) узгоджується із виявленою в експерименті з 
пружного розсіяння електронів аномалію  середньоквадратичний радіус ядра 7Li менший за середньо-
квадратичний радіус ядра 6Li; б) приводить до висновку, що, у рамках двокластерної моделі ядра 7Li ( + t), 
розмір -кластера має бути більшим за розмір ядра 4Не.  

Ключові слова: розсіяння електронів, 7Li, поздовжня функція відгуку, кулонова сума, кулонова енергія, кластери. 
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КУЛОНОВСКАЯ СУММА ЯДРА 7Li 
 

Получены экспериментальные значения продольной функции отклика ядра 7Li и на этой базе найдены значения 

кулоновской суммы в диапазоне переданных импульсов от 0,550 до 1,625 фм-1. С помощью полученных значений 

кулоновской суммы определена полная кулоновская энергия ядра 7Li. Результат сравнения кулоновской энергии ядра 
7Li с кулоновскими энергиями ядер 6Li и 4Не а) согласуется с обнаруженной в эксперименте по упругому рассеянию 

электронов аномалией  среднеквадратичный радиус ядра 7Li меньше, чем среднеквадратичный радиус ядра 6Li;  

б) приводит к выводу, что, в рамках двухкластерной модели ядра 7Li ( + t), размер -кластера должен быть больше, 

чем размер ядра 4Не. 

Ключевые слова: рассеяние электронов, 7Li, продольная функция отклика, кулоновская сумма, кулоновская 

энергия, кластеры. 
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