УДК 621.039.058

А.С. Мазурок, М.П. Вышемирский

ООО «Атомэнергосервис», г. Киев, Украина

Валидация теплогидравлической модели реакторной установки с применением методики быстрого преобразования Фурье для количественной оценки полученных результатов

Выполнена количественная оценка результатов динамической валидации теплогидравлической модели реакторной установки для кода RELAP5/mod3.2. В качестве события-представителя рассмотрен инцидент, произошедший на энергоблоке № 3 Ривненской АЭС 22.09.2009, с незакрытием главного предохранительного клапана импульсного предохранительного устройства компенсатора давления. Для количественной оценки использована методика быстрого преобразования Фурье (Fast Fourier Transform-Based Method).

Ключевые слова: валидация, инцидент, теплогидравлическая модель, количественная оценка, быстрое преобразование Фурье.

О. С. Мазурок, М. П. Вишемірський

Валідація теплогідравлічної моделі реакторної установки із застосуванням методики швидкого перетворення Фур'є для кількісної оцінки отриманих результатів

Виконано кількісну оцінку результатів динамічної валідації теплогідравлічної моделі реакторної установки для коду RELAP5/ mod3.2. Як подію-представник розглянуто інцидент, що стався на енергоблоці № 3 Рівненської АЕС 22.09.2009, з незакриттям головного запобіжного клапана імпульсного запобіжного пристрою компенсатора тиску. Для кількісної оцінки використано методику швидкого перетворення Фур'є (Fast Fourier Transform-Based Method).

Ключові слова: валідація, інцидент, теплогідравлічна модель, кількісна оцінка, швидке перетворення Фур'є. соответствии с требованиями нормативной документации Украины, в частности общих правил безопасности атомных станций (ОПБ-2008) [1], используемые для обоснования безопасности атомных электростанций (АЭС) аналитические модели должны пройти валидацию для подтверждения их способности отражать реалистичную работу систем и оборудования энергоблока в целом.

В рабочей практике для оценки результатов валидации теплогидравлических моделей с целью их использования для обоснования безопасности АЭС достаточно качественного анализа либо количественного с оценкой попадания отдельных расчетных значений в интервал двух среднеквадратических отклонений (±2σ).

В данной статье предлагается использовать методику быстрого преобразования Фурье (БПФ), которая позволяет выполнить количественную оценку не только отдельных значений, но и оценить результаты валидации обобщенно по большинству расчетных значений.

Методика применена для количественной оценки валидации четырехпетлевой модели реакторной установки (РУ) энергоблока ВВЭР-1000/В-320 для кода RELAP5/mod3.2, разработанной в рамках периодической переоценки безопасности энергоблока № 3 Ривненской атомной электростанции (РАЭС) [2].

Выбор сценария для выполнения валидационного расчета. В качестве события-представителя для проведения валидационного расчета принято нарушение, имевшее место 22.09.2009 на энергоблоке № 3 РАЭС [3, 4] и вызванное незакрытием после открытия главного предохранительного клапана (ПК) импульсного предохранительного устройства (ИПУ) компенсатора давления (КД) YP21S01 во время плановой проверки работоспособности реальным повышением давления в первом контуре вследствие заклинивания золотника клапана разгрузки в направляющей втулке.

Такой выбор обусловлен масштабом события и наличием достаточного количества информации о характере протекания переходного процесса, в том числе данных о поведении основных теплогидравлических параметров первого и второго контуров РУ, описания работы оборудования и систем, хронологии срабатывания защит, непротиворечивостью имеющихся данных и т. д.

Результаты валидации. В качестве начальных условий выбраны значения параметров состояния систем и оборудования РУ, соответствующие моменту открытия ИПУ КД, а именно: тепловая мощность реактора — 1,67 МВт; давление в первом контуре — $P_{1k} = 186,5$ кгс/см² (соответствует давлению открытия ИПУ КД); уровень в КД — 5,6 м; уровни в парогенераторах (ПГ) — 2,47...2,63 м.

В качестве граничных условий для моделирования события предполагалось заклинивание контрольного ИПУ КД в полностью открытом положении и действия оперативного персонала (ОП) по организации: подпитки первого контура насосами системы аварийного охлаждения активной зоны высокого давления (САОЗ ВД), а также насосами подсистемы подпитки из баков ТВ10; открытия арматуры на линии сдувок из реактора, ПГ и КД; расхолаживания РУ через быстродействующие редукционные установки сброса пара в конденсатор и атмосферу (БРУ-К и БРУ-А) и подпитки второго контура от вспомогательных питательных электронасосов (ВПЭН-1,2).

Последовательность событий с точки зрения развития переходного процесса и условий работы систем и оборудования РУ дана в табл. 1. Значения основных параметров РУ и объемного расхода насосов САОЗ приведены к начальному значению и представлены на рис. 1 и 2.

Время					
РАЭС	RELAP	Событие на АЭС	Событие в расчете		
21:14:49 (0 c)	0.0 c	<i>Р</i> _{1k} достигло 186,5 кгс/см ² . Открывается контрол	льный клапан ИПУ КД		
21:15:47 (57 c)	60 c	Включение всех групп трубчатых электронагревателей (ТЭН) КД			
21:16:00 (70 c)	70 c	Разрыв мембраны бака-барботера (ББ)			
21:17:00 (130 c)	131 c	Аварийное отключение ТЭН КД по уровню в КД менее 4200 мм			
21:20:00 (310 c)	327 c	Зафиксировано открытие обратных клапанов на линиях подачи раствора борной кислоты от гидроемкостей (ГЕ) САОЗ при снижении P_{1k} менее 58 кгс/см ²	Начало подачи концентрата борной кислоты от ГЕ САОЗ при снижении <i>P</i> _{1k} менее 58 кгс/см ²		
21:21:00 (371 c)	371 c	ОП начинает подачу от насосов TQ1(2,3)4D01 в	осов TQ1(2,3)4D01 в первый контур		
21:28:00 (790 c)	790 c	ОП начинает подачу от насоса TQ13D01 в первый контур			
21:30:00 (910 c)	910 c	Начато заполнение ПГ 1-4 для расхолаживания РУ	Заполнение осуществляется с помощью ВПЭН		
21:32:00 (1041 c)	1041 c	ОП прекращает подачу от насоса TQ13D01 в первый контур			
21:34:00 (1201 c)	1201 c	ОП начинает подачу от насоса TQ23D01 в первый контур			
21:37:00 (1331 c)	1331 c	ОП открывает арматуру на линии сдувок из ре- актора YR01-03S01, ПГ и КД	Объединяются в общий коллектор аварийные газовые сдувки реактора, ПГ и КД. При повышении уровня в КД ОП открывает арматуры системы аварийного газоудаления из реактора на ББ и закрывает линии от си- стемы КД		
21:41:00 (1570 c)	1570 c	ОП начинает расхолаживание второго контура через БРУ-К (RC11S01)	Начальная степень открытия БРУ-К1 — 8,6 %		
21:44:00 (1761 c)	1761 c	ОП начинает подачу от насоса TQ33D01 в первый контур			
21:49:13 (2064 c)	2064 c	Срабатывание защиты САОЗ по повышению давления в гермообъеме (ГО) больше 1,3 кгс/см ² , локализация ГО, запуск механизмов САОЗ в проектном объеме	Моделируется формирование сигнала по повы- шению давления в ГО больше 1,3 кгс/см ²		
21:49:30 (2080 c)	2080 c	Отключение насосов подпитки системы ТК вследствие локализации ГО			
21:49:30 (2081 c)	2081 c	Возобновление подачи от насоса TQ13D01 в первый контур вследствие формирования сигнала САОЗ			
21:51:10 (2111 c)	2111 c	ОП выведены из работы на первый контур насосы TQ1(2,3)4D01			
21:50:50 (2156 c)	2156 c	ОП выведен из работы на первый контур насос TQ33D01			
21:55:00 (2436 c)	2436 c	ОП выведен из работы на первый контур насос TQ23D01			
22:13:00 (3521 c)	3521 c	ОП выведен из работы на первый контур насос TQ13D01			
22:30:00 (4510 c)	4095 c	Зафиксирована подача на первый контур раствора борного концентрата насосами TQ1(2,3)2D01 при $P_{1k} = 23$ кгс/см ²			
_	5115 c	Окончание расчета			

Таблица 1. Последовательность событий в ходе нарушения

Результаты расчетного анализа показали хорошее соответствие с измеренными данными на энергоблоке за исключением температур теплоносителя в главном циркуляционном трубопроводе (ГЦТ). Данное отличие связано с возникновением эффекта термической стратификации однофазного теплоносителя, движущегося в петлях РУ. Этот эффект уже достаточно исследован для рассматриваемого инцидента, в том числе и в [4, 5], поэтому в рамках данной статьи детально не анализируется.

Методика БПФ. Оценка результатов валидации модели с помощью методики БПФ проводится в частотной области путем определения функции, характеризующей точность расчета [6, 7]. Для выполнения преобразования необходимы массив измеренных (экспериментальных)

ISSN 2073-6237. Ядерна та радіаційна безпека 1(61).2014

4 000

Relap

- - РАЭС

5 0 0 0

– Relap

5 000

Relap — — — РАЭС

5 000

Relap

5 000

6 000

– – РАЭС

6 000

6 000

— — — РАЭС

6 000

4 000

4 0 0 0

4 000

Рис. 13. Температура теплоносителя в ХН петли № 3

Рис. 14. Температура теплоносителя в ХН петли № 4

Рис. 16. Температура теплоносителя в ГН петли № 2

Рис. 17. Температура теплоносителя в ГН петли № 3

Рис. 18. Температура теплоносителя в ГН петли № 4

Рис. 19. Объемный расход от насоса TQ13D01

Рис. 21. Объемный расход от насоса TQ33D01

данных $F_{exp}(t)$ и функция ошибки во временной области ΔF для каждого параметра, которая определяется по формуле

$$\Delta F = F_{calc}(t) - F_{exp}(t) , \qquad (1)$$

где $F_{calc}(t)$ — массив расчетных данных.

Количественная оценка точности расчетных данных основывается на амплитудах дискретных экспериментальных данных $|\overline{F}_{exp}(f_n)|$ и функций ошибки $|\Delta \overline{F}(f_n)|$, полученных с помощью БПФ для частот f_n , где $n = 0, 1, ..., 2^m$ (m = 8, 9, 10, 11). Эти спектры амплитуд в дальнейшем используются для расчета средней амплитуды AA (англ. — Average Amplitude), которая характеризирует точность расчетного кода.

АА, представляющая собой ошибку в расчете некоторой переменной, определяется по формуле

$$AA = \frac{\sum_{n=0}^{2^{m}} \left| \Delta \overline{F}(f_{n}) \right|}{\sum_{n=0}^{2^{m}} \left| \overline{F_{exp}}(f_{n}) \right|}.$$
 (2)

Значение *АА* можно рассматривать как своего рода среднюю относительную погрешность, т. е. чем ближе значение *АА* к нулю, тем точнее результат.

Второй величиной, характеризирующей точность вычислений, является взвешенная частота *WF* (англ. — Weighted Frequency):

$$WF = \frac{\sum_{n=0}^{2^{m}} \left| \Delta \overline{F}(f_{n}) \right| \cdot f_{n}}{\sum_{n=0}^{2^{m}} \left| \overline{F_{exp}}(f_{n}) \right|}.$$
(3)

WF дает информацию о том, в каком случае погрешность можно считать приемлемой. Высокая точность расчета достигается при низких значениях *AA* и высоких значениях *WF*, так как предполагается, что источником погрешностей являются различные виды «шумов».

Общий результат, дающий представление о точности выполненного расчета, можно получить, вычислив суммарную среднюю амплитуду AA_{tot} и суммарную взвешенную частоту WF_{tot} :

$$AA_{tot} = \sum_{i=1}^{N_{var}} AA_i(w_f)_i, \ WF_{tot} = \sum_{i=1}^{N_{var}} WF_i(w_f)_i, \quad (4)$$

где AA_i и WF_i — значения AA и WF для *i*-й переменной; w_f — весовой коэффициент, получаемый при помощи трех составляющих: w_{exp} , w_{saf} , w_{norm} . Для w_f должно выполняться условие

$$\sum_{i=1}^{N_{var}} (w_f)_i = 1.$$
 (5)

Здесь $N_{var} = 2^{m+1}$ — число анализируемых переменных. Весовой коэффициент определяется по формуле

$$(w_{f})_{i} = \frac{(w_{exp})_{i} \cdot (w_{saf})_{i} \cdot (w_{norm})_{i}}{\sum_{i=1}^{N_{var}} (w_{exp})_{i} \cdot (w_{saf})_{i} \cdot (w_{norm})_{i}},$$
(6)

где w_{exp} — коэффициент, характеризующий точность экспериментальных данных, на которую влияет неопределенность, вносимая внутренней погрешностью измерительных приборов, погрешностью метода измерения и различных процедур оценки, используемых для сравнения экспериментальных и расчетных данных; w_{saf} — коэффициент, характеризирующий важность рассматриваемого параметра с точки зрения безопасности (более высокая важность придается точности рассчитанных переменных, которые имеют отношение к безопасности, например давлению и температуре оболочек твэлов); w_{norm} — коэффициент, учитывающий нормализацию расчетных параметров по отношению к P_{1k} .

Значения весовых коэффициентов w_{exp} , w_{saf} , w_{norm} фиксированы и отличаются в зависимости от важности параметра (табл. 2).

Для выполнения количественной оценки валидации с помощью методики БПФ используются 20—25 представительных переменных. Показателем приемлемости результатов расчета является обобщенная средняя амплитуда AA_{tot} , которая сравнивается с критерием приемлемости *K*:

$$AA_{tot} < K. \tag{7}$$

Таблица 2. Значения составляющих весовых коэффициентов

Параметр	w _{exp}	w _{saf}	w _{norm}
Давление в первом контуре	1,0	1,0	1,0
Давление во втором контуре	1,0	0,6	1,1
Перепад давления	0,7	0,7	0,5
Запас массы	0,8	0,9	0,9
Расход	0,5	0,8	0,5
Температура среды	0,8	0,8	2,4
Температура оболочек твэлов	0,9	1,0	1,2
Взвешенный уровень	0,8	0,9	0,6
Мощность реактора	0,8	0,8	0,5

Таблица 3. Результаты применения методики БПФ (расчет AA и WF)

№ п/п	Параметр	AA	WF
1	Взвешенный уро- вень в КД	0,080066	0,016029
2	Давление теплоно- сителя	0,077389<0,1	0,015493
3	Уровень в ПГ-1	0,038355	0,007678
4	Уровень в ПГ-2	0,018994	0,003803
5	Уровень в ПГ-3	0,016759	0,003355
6	Уровень в ПГ-4	0,031891	0,006384
7	Давление в ПГ-1	0,095719	0,019163
8	Давление в ПГ-2	0,090347	0,018087
9	Давление в ПГ-3	0,091680	0,018354
10	Давление в ПГ-4	0,078081	0,015631
11	Температура тепло- носителя в ХН петли № 1 ГЦТ	0,158348	0,031701
12	Температура тепло- носителя в ХН петли № 2 ГЦТ	0,47934	0,095962
13	Температура тепло- носителя в ХН петли № 3 ГЦТ	0,107205	0,021462
14	Температура тепло- носителя в ХН петли № 4 ГЦТ	0,10043	0,020106
15	Температура тепло- носителя в ГН петли № 1 ГЦТ	0,181106	0,036257
16	Температура тепло- носителя в ГН петли № 2 ГЦТ	0,169207	0,033875
17	Температура тепло- носителя в ГН петли № 3 ГЦТ	0,185339	0,037104
18	Температура тепло- носителя в ГН петли № 4 ГЦТ	0,158097	0,03165
19	Объемный расход от насоса TQ13D01	0,213395	0,042721
20	Объемный расход от насоса TQ23D01	0,200721	0,040183
21	Объемный расход от насоса TQ33D01	0,315095	0,063081
Обобщенные значения		$AA_{tot} = 0,155 < 03$	$WF_{tot} = 0,031$

Для оценки достоверности расчетов используются следующие значения $K: AA_{tot} \le 0,3$ — очень хорошая; $0,3 \le AA_{tot} \le 0,5$ — хорошая; $0,5 \le AA_{tot} \le 0,7$ — плохая; $AA_{tot} > 0,7$ — очень плохая достоверность расчетов.

Для переменной, характеризирующей P_{1k} , учитывая важность параметра, значение K принято равным 0,1, т. е. должно выполнятся условие $AA_{tot} \leq 0,1$.

Количественная оценка результатов валидации с использованием методики БПФ. Для выполнения количественной оценки выбран минимальный, но достаточный для анализа переходного процесса набор параметров. Исходя из условий применения методики БПФ (количество анализируемых значений должно удовлетворять условию $N=2^m$), проанализировано $2^{10} = 1024$ расчетных точек, что соответствует 5115 с переходного процесса с временным шагом 5 с. Результаты расчета по методике БПФ приведены в табл. 3.

Полученное значение суммарной средней амплитуды менее 0,3 и выполнение критерия касательно P_{1k} свидетельствуют об очень хорошей достоверности результатов валидационного расчета.

Выводы

В результате сравнительного анализа переходного процесса, выбранного для валидации, можно сделать вывод о хорошем совпадении результатов в части поведения расчетных и измеренных параметров, о чем свидетельствует количественная оценка полученных результатов.

Использование методики БПФ позволило оценить результаты валидации обобщенно по основным параметрам РУ в отличие от обычно выполняемой оценки отдельно по каждому параметру.

Данная методика может быть использована для оценки результатов валидации разрабатываемых в рамках обоснования безопасности АЭС Украины теплогидравлических моделей РУ, а также, для сравнения, — результатов, полученных при помощи различных кодов.

Список использованной литературы

1. Загальні положення безпеки атомних станцій (НП 306.2.141– 2008) : Затвердж. наказом Держатомрегулювання від 19.11.2007 № 162, зареєстр. в Мін'юсті 25.01.2008 за № 56/14747 // Офіційний вісник України від 15.02.2008. — 2008. — № 9. — С. 28 — Ст. 226.

2. Ривненская АЭС. Энергоблок № 3. Отчет по периодической переоценке безопасности. Описание и валидация расчетной теплогидравлической модели для компьютерного кода RELAP5/ MOD3.2 / ООО «Атомэнергосервис». — К., 2013. — 96 с.

3. Отчет о расследовании нарушения в работе РАЭС. Незакрытие главного предохранительного клапана ИПУ КД YP21S01 во время плановой проверки работоспособности реальным повышением давления в первом контуре перед пуском энергоблока № 3 после ППР из-за подклинивания в седле золотника импульсного клапана YP21S04 после его открытия / ОП Ривненская АЭС. — Кузнецовск, 2009. — 205 с. 4. Ривненская АЭС. Выполнение расчетов по оценке целостности РУ энергоблока № 3 РАЭС по результатам незакрытия ИПУ КД в состоянии «горячий останов». Этап 2: Теплогидравлические расчеты режима с незакрытием ИПУ КД при опробовании в состоянии «горячего останова» / ООО «Атомэнергосервис». — К., 2011. — 114 с.

5. Практика использования расчетных моделей для системных теплогидравлических кодов в регулирующей деятельности в Украине / Ю. П. Алексеев, А. И. Бережной, В. П. Мукоид, А. С. Мазурок // Матер. 9-й Междунар. науч.-практ. конференции «Безопасность, эффективность, ресурс ЯЭУ». — Севастополь, 2011. — 34 с. [Электронный ресурс]. — Режим доступа: http://icnpe. com.ua/prezentacii-mnpk-pae-2011.

6. Quantitative Code Assessment with Fast Fourier Transform Based Method Improved by Signal Mirroring (NUREG/IA-0220) / U. S. Nuclear Regulatory Commission. – Washington, 2009. – 95 p.

7. *Prosek A*. A tool for quantitative assessment of code calculations with an improved fast Fourier transform based method / A. Prosek, B. Mavko // Elektrotehniski vestnik. - 2003. - 70(5). - P. 291-296.

References

1. General provisions of nuclear power plants safety (NP 306.2.141–2008), approved by the Nuclear Regulatory Committee of 19.11.2007 № 162, registered in Ministry of Justice of 25.01.2008, № 56/14747. (Rus)

2. Rivne NPP. Unit 3. Report on periodic reassessment of safety. Description and validation of computational models for the thermohydraulic computer code RELAP5/MOD3.2/Atomenergoservice, Ltd. — Kiev, 2013. — 96 p. (Rus)

3. Report on infringement investigation at Rivne NPP Unit 3. Stuck open pressurizer safety valve 3YP21S01 / Rivne NPP. — Kuznetsovsk, 2009. — 205 p. (Rus)

4. Rivne NPP. Perform calculations to assess the integrity of Rivne NPP unit 3 reactor facility due to PRZ SV stuck open in the hot shutdown mode. Stage 2. Thermal-hydraulic calculations of regime with PRZ SV stuck open during function test in a hot shutdown mode / Atomenergoservice, Ltd. — Kiev, 2011. — 114 p. (Rus)

5. The practice of using computational models for system thermal hydraulic codes in regulatory activities in Ukraine / J. Alekseev, A. Berezhnoj, V. Mukoid, A. Mazurok // Proceedings of 9th International Scientific-Practical Conference on Nuclear Energy «Safety, Efficiency, Resource of nuclear facility». — Sebastopol, 2011. (Rus)

6. Quantitative Code Assessment with Fast Fourier Transform Based Method Improved by Signal Mirroring (NUREG/IA-0220) / U.S. Nuclear Regulatory Commission. — Washington, 2009. — 95 p.

7. *Prosek A*. A tool for quantitative assessment of code calculations with an improved fast Fourier transform based method / A. Prosek, B. Mavko // Elektrotehniski vestnik. – 2003. – 70(5). – P. 291–296.

Отримано 29.10.2013.