УДК 621.382.2

И. Н. Майборода, В. П. Бабенко

ОСОБЕННОСТИ РАБОТЫ ДИОДОВ ГАННА НА ОСНОВЕ ВАРИЗОННОГО СОЕДИНЕНИЯ Al_xGa_{1-x}As-GaAs-Ga_{0,6}In_{0,4}As

В статье проведены числовые эксперименты по генерации электромагнитных колебаний с помощью диодов Ганна на основе варизонного соединения AlGaInAs, оптимизированы параметры и получены выходные характеристики диодов.

Ключевые слова: частота, эффективность, генерация, диод Ганна, варизонный полупроводник, междолинный перенос электронов, выходная мощность, электромагнитные колебания, перенос заряда, доменная неустойчивость, арсенид галлия, арсенид индия, арсенид алюминия.

Постановка проблемы. Приборы, работа которых основана на эффекте междолинного переноса электронов (МПЭ) в миллиметровом диапазоне длин волн, имеют ряд принципиальных проблем, ограничивающих сверху рабочую частоту. Одна из них связана с разогревом электронного газа вблизи катодного контакта. Для того чтобы сократить размеры "холодной" зоны, используют всевозможные катодные контакты, которые обеспечивают разогрев электронного газа у катода. Это, как правило, резкие гомо- или гетеропереходы, создающие в окрестности катода короткую область с высоким значением электрического поля, где электроны без столкновений набирают энергию, достаточную для рассеяния в боковые долины.

На ограничение частотных возможностей субмикронных диодов оказывает отрицательное влияние также и анодный контакт. Область высокого поля анодного $n-n^+$ контакта влияет на электроны, находящиеся в окрестности катодного контакта. Для развязки катода с анодом используют двухзонный $n^+-n^- n^+-n$ катод или гетеропереход на аноде. Создание приборов со сложными контактами является технологически дорогостоящей задачей. Поэтому для получения генерации электромагнитных колебаний в миллиметровом диапазоне, как правило, используют генерацию гармоник на диодах с омическим n^+-n или m-n катодом и анодом.

Анализ последних исследований и публикаций. В варизонных полупроводниках A_3B_5 разогрев электронного газа имеет особенности, которые позволяют принципиально по-иному решить упомянутые проблемы. Результаты теоретических исследований МПЭ в варизонных полупроводниках и приборах на их основе изложены в публикациях [1–3]. С помощью двухтемпературной модели МПЭ в варизонном полупроводнике исследована работа InGaAs [1], AlGaAs [2], InPAs [3] варизонных диодов Ганна (ДГ) с n^+ -n и n^+ - n^- -n катодами. По выходной мощности и предельной рабочей частоте такие диоды могут превосходить аналогичные диоды с другими известными типами катодных контактов.

Анализ работы ДГ на основе разных варизонных полупроводников показал, что основным путем повышения эффективности работы ДГ является локальное понижение энергетического зазора между неэквивалентными долинами в варизонном полупроводнике в области катодного контакта. Оптимальная величина энергетического зазора между долинами в катодном контакте при температуре кристаллической решетки 300 К составляет 0,1÷0,2 эВ. Однако в некоторых тройных варизонных соединениях, таких как InGaAs и InPAs, оптимума энергетического зазора добиться не удается из-за ограничения нижней его границы в GaAs (0,36 эВ) и InP (0,6 эВ). Более сложные полупроводниковые соединения AlGaInAs и InGaPAs позволяют варьировать энергетическим зазором между долинами в большем интервале, чем AlGaAs, InPAs, GaPAs и InGaAs. Работа ДГ на основе названных соединений не исследована.

Цель статьи — изучение особенностей работы $Д\Gamma$ на основе варизонного соединения AlGaInAs, поиск оптимального распределения бинарных компонент AlAs, GaAs и InAs в диоде и получение выходных характеристик.

Изложение основного материала. Рассматриваются ДГ n^+ –n– n^+ структуры, представленной на рис. 1. Процентные содержания InAs и AlAs в $Al_{x(z)}Ga_{1-x(z)-y(z)}In_{y(z)}As$ задаются однотипными зависимостями

© И. Н. Майборода, В. П. Бабенко

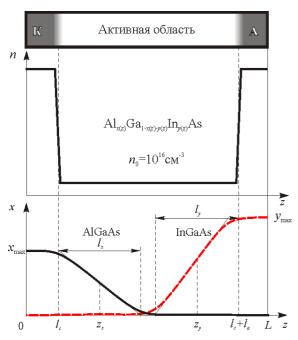


Рис. 1. Схема структуры, профиля легирования и распределение бинарных компонент InAs и AlAs в диоде Ганна на основе варизонного соединения $Al_{x(z)}Ga_{1-x(z)-\nu(z)}In_{\nu(z)}As$

$$x(z) = x_{\text{max}} \left[1 + \exp\left\{ \frac{4(z - z_x)}{l_x} \right\} \right]^{-1};$$

$$y(z) = y_{\text{max}} \left[1 - \left[1 + \exp\left\{ \frac{4(z - z_y)}{l_y} \right\} \right]^{-1} \right],$$
(1)

где x_{max} – предельное содержание AlAs при $z \to -\infty$ (в катоде); $y_{\text{max}} = 0.4$ – предельное содержание InAs при $z \rightarrow +\infty$ (в аноде); l_x и l_y – характерные длины переходных (варизонных) слоев для х и у компонент; z_x и z_y — координаты центров переходных слоев для xи у компонент. В данном исследовании $l_x = l_y = 1,2$ мкм $\approx l_a/2$, где l_a – длина активной области диода. Параметры z_x и z_y подобраны таким образом, что в центре активной области $x(z) \approx 0$ и $y(z) \approx 0$ (рис. 1). Исследованы диоды с длиной активной области, равной 2,5 мкм, и концентрацией электронов в ней $n_0 = 10^{16}$ см⁻³.

Таким образом, рассматривается $Al_{x(z)}Ga_{1-x(z)}As$ --GaAs-In_{0.4}Ga_{0.6}As структура диода с омическими катодным n^+ -n и анодным n- n^+ Температура кристаллической решетки постоянна и равна 300 К.

Исследования проводились с помощью трехуровневой модели МПЭ в полупроводниках, основанной на решении кинетического уравнения Больцмана для случая смещенного максвелловского распределения электронов [3]. Данная модель представляет собой систему уравнений, состоящую из уравнений непрерывности (2), плотности тока (3) и баланса энергии (4) для каждой из трех неэквивалентных долин зоны проводимости полупроводника, а также уравнения Пуассона (5):

$$\frac{\partial n_i}{\partial t} = -\frac{1}{e} \frac{\partial j_i}{\partial z} - \frac{n_i}{\tau_{n,ij}} - \frac{n_i}{\tau_{n,ik}} + \frac{n_j}{\tau'_{n,ji}} + \frac{n_\kappa}{\tau'_{n,\kappa i}}; \tag{2}$$

$$j_{i} = n_{i} \mu_{i} \left(eE + \frac{\partial \chi_{i}}{\partial z} \right) + \kappa_{b} \mu_{i} \left(\frac{3n_{i}T_{i}}{2m_{i}} \frac{\partial m_{i}}{\partial z} - \frac{\partial (n_{i}T_{i})}{\partial z} \right); \tag{3}$$

$$\frac{3}{2}\kappa_b \frac{\partial n_i T_i}{\partial t} = j_i E + \frac{j_i}{e} \frac{\partial \chi_i}{\partial z} - \frac{5}{2}\kappa_b \frac{1}{e} \frac{\partial (j_i T_i)}{\partial z} - \frac{3}{2}\kappa_b \left(\frac{n_j T_j}{\tau'_{\epsilon,ji}} + \frac{n_\kappa T_\kappa}{\tau'_{\epsilon,\kappa i}} - \frac{n_i T_i}{\tau_{\epsilon,i}} \right); \tag{4}$$

$$\frac{\partial(\varepsilon E)}{\partial z} = 4\pi e \left(n_i + n_j + n_\kappa - n_0 \right),\tag{5}$$

где индексы i, j, κ определяют три неэквивалентные долины. Уравнения (2–4) записаны для i-й долины. Здесь n_i , μ_i , m_i , j_i , T_i – соответственно концентрация, подвижность, эффективная масса, плотность тока и температура электронов в i-й долине; $\tau_{n,ij}$ – время релаксации концентрации и энергии электронов при междолинном переходе из i- в j-долину, $au_{\varepsilon,i}$ – время релаксации энергии электронов в i-й долине; χ_i — энергия, необходимая для того, чтобы перевести электроны с энергетического минимума i-й долины до локального уровня вакуума; E — напряженность электрического поля; n_0 – концентрация ионизированных доноров; ε – диэлектрическая проницаемость; e – модуль заряда электрона; κ_b – постоянная Больцмана; t – время; z – координата. Средняя плотность тока в диоде определяется как сумма средних в трех долинах. Система уравнений (2-5) решалась численными методами. Моделировалась ситуация, когда к диоду прикладывается синусоидальное напряжение с постоянной составляющей, что соответствует помещению его в одноконтурный резонатор. Выходные характеристики оптимизировались для разных частот по напряжению смещения и амплитуде первой гармоники. Вычисление эффективности генерации диодов проводилось для второго и третьего периодов колебаний.

Энергетические характеристики. В диодах с $Al_{x(z)}Ga_{1-x(z)}As$ ($Al_xGa_{1-x}As$ –GaAs) варизонным слоем в зависимости от значения x_{max} могут возникать режимы, связанные с дрейфом дипольных доменов или обогащенных слоев. Доменный режим неустойчивости возникает при небольшом значении $x_{max} = 0.03...0.04$ ($\Delta_{min} \approx 0.33$ эВ). При возрастании x_{max} энергетический зазор между центральной долиной и ближайшей по энергии боковой долиной уменьшается, что приводит к увеличению

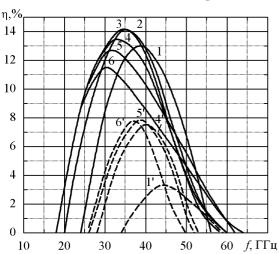


Рис. 2. Зависимость эффективности генерации ДГ от частоты: $Al_xGa_{1-x}As$ —GaAs— $Ga_{0,6}In_{0,4}As$ — непрерывные линии и $Al_xGa_{1-x}As$ —GaAs — пунктирные линии (1, $1'-x_{max}$ = 0 мкм; 2 – 0,5 мкм; 3 – 0,10 мкм; 4, 4' – 0,15 мкм; 5, 5' – 0,20 мкм; 6, 6' – 0,25 мкм)

электронами заселенности боковых локализованных вблизи катодного контакта. Тем самым улучшаются условия формирования доменов. Электроны, которые находятся у катода, быстрее и при меньших уровнях энергии переходят в боковые долины. Длина области разогрева электронов у катода уменьшается. Этот процесс сопровождается ростом пиковых значений эффективности генерации и выходной мощности (рис. 2). Однако высокая заселенность электронами боковых долин у катода приводит уменьшению средней дрейфовой скорости распространения доменов, из-за чего генерации оптимальная частота (частота, соответствующая максимуму эффективности) падает. Оптимальное значение $x_{\text{max}} = 0.20$, что соответствует $\Delta_{\min} \approx 0.19 \ \mathrm{эB}$. Данный оптимум обусловлен влиянием зависимости энергии электронного средства от координаты, которая приводит к потоку электронов, направленных от анода к катоду. Кроме того, увеличение заселенности боковых долин у катода влечет за собой повышение потребляемой диодом мощности.

В диодах с $I_{n_y(z)}Ga_{1-y(z)}As$ ($GaAs-I_{n_0,4}Ga_{0,6}As$) варизонным слоем физические процессы такие же, что и в $Al_{x(z)}Ga_{1-x(z)}As$ диодах. Для такого диода максимальное значение эффективности генерации имеет место, когда $y_{min}=0$ ($\Delta_{min}\approx 0.36$ эВ). Совмещение двух соединений в одном диоде: $Al_{x(z)}Ga_{1-x(z)}As$ в окрестности катодного контакта и $In_{y(z)}Ga_{1-y(z)}As$ вблизи анодного контакта, позволяет уменьшать энергетический зазор Δ_{min} путем увеличения x_{max} . Как видно из зависимостей на рис. 2, в диодах с $Al_{x(z)}Ga_{1-x(z)-y(z)}In_{y(z)}As$ ($Al_xGa_{1-x}As-GaAs-Ga_{0,6}In_{0,4}As$) варизонным слоем достигается экстремум эффективности генерации при оптимальном значении $x_{max}=0.10$ ($\Delta_{min}\approx 0.28$ эВ). Сравнительный анализ показывает, что эффективности генерации $Al_xGa_{1-x}As-GaAs-Ga_{0,6}In_{0,4}As$ и $GaAs-Ga_{0,6}In_{0,4}As$ диодов с длиной активной области, равной 2,5 мкм, отличаются незначительно. Можно предположить, что при меньшей длине активной области это различие будет существеннее.

Выводы

- 1. В диодах Ганна на основе варизонного соединения $Al_xGa_{1-x}As$ —GaAs— $Ga_{0,6}In_{0,4}As$ при любом содержании AlAs реализуется режим с доменной неустойчивостью.
- 2. Оптимальное содержание бинарной компоненты AlAs в варизонном соединении $Al_xGa_{1-x}As$ –GaAs– $Ga_{0,6}In_{0,4}As$ в катодном контакте составляет 0,1, что соответствует минимальному зазору между неэквивалентными долинами 0,28 эВ. При этом пиковое значение эффективности генерации составляет 14,3 % на частоте 35 ГГц с выходной мощностью 10,3 кВт/см². Для сравнения, пиковое значение эффективности генерации GaAs– $Ga_{0,6}In_{0,4}As$ диодов составляет 13 % на частоте 38,7 ГГц с выходной мощностью 9,8 кВт/см².
- 3. Диоды Ганна на основе варизонного соединения $Al_xGa_{1-x}As$ —GaAs— $Ga_{0,6}In_{0,4}As$ при оптимальном содержании AlAs в катодном контакте почти вдвое превосходят по эффективности генерации и выходной мощности ДГ на основе $Al_xGa_{1-x}As$ —GaAs. Оптимальное содержание бинарной компоненты AlAs в варизонном соединении $Al_xGa_{1-x}As$ —GaAs в катодном контакте составляет 0,2, что соответствует минимальному зазору между неэквивалентными долинами 0,19 эВ. При этом пиковое

И. Н. Майборода, В. П. Бабенко. Особенности работы диодов Ганна на основе варизонного coeдинения Al_xGa_{1-x}As-GaAs-Ga_{0.6}In_{0.4}As

значение эффективности генерации составляет 7,9 % на частоте 37 ГГц с выходной мощностью 5.4 kBt/cm^2 .

Таким образом, варизонные AlGaInAs диоды Ганна превосходят однотипные InGaAs и AlGaAs диоды по эффективности генерации и выходной мощности. Результаты исследования расширяют знания о физических процессах переноса носителей заряда в сложных полупроводниковых структурах и могут быть использованы для технологических разработок новых быстродействующих приборов на основе варизонных полупроводниковых соединений.

Список использованных источников

- 1. Стороженко, И. П. Частотные возможности диодов с междолинным переносом электронов на основе варизонного $In_{x(z)}Ga_{1-x(z)}As$ с различными катодными контактами [Текст] / И. П. Стороженко // Радиотехника и электроника. – 2007. – Т. 52, № 10. – С. 1253 – 1259.
- 2. Стороженко, И. П. Диоды Ганна на основе варизонного $Al_{x(z)}Ga_{1-x(z)}As$ с различными катодными контактами [Текст] / И. П. Стороженко // Радиофизика и радиоастрономия. – 2006. – Т. 11, № 2. – C. 186 - 197.
- 3. Стороженко, И. П. Варизонные $InP_{1-x(z)}As_{x(z)}$ диоды Ганна с различными катодными контактами [Текст] / И. П. Стороженко // Радиофизика и электроника. – 2006. – Т. 11, № 3. –С. 421 – 429.

Стаття надійшла до редакції 25.11.2015 р.