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other hand is carried out. The calculation is performed for 25 modes. The results of the calculations which 
determine the dependence of turbo-mechanisms energy on technical parameters and operating conditions may 
ten times vary. 

To define real power consumption of turbo-mechanisms we should take into account the most rational 
and possible modes of its operation.To calculate power intensity, defined in the normal turbo-mechanisms 
operating modes, we  must use the minimum and maximum values of static efficiency, static pressure and air 
volume corresponding to the values of fan parameters performance.In this case we should perform the 
calculation for the 25 modes.The results of  the study prove the dependence of turbo-mechanisms power of 
technical parameters and operating conditions which may vary by tens of times; therefore, it requires further 
investigation of equipment automation and devices for its saving. 
air-gas flow, turbo-mechanisms, specific power supply, power system, dependence, efficiency 
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Modeling of optimal automatic control of the process of 
biological clearing of polluted waters by fractional order 
regulators 
 

The problem of modeling the control of the process of biological treatment of polluted waters using 
fractional PI D  - regulators is considered and solved. Optimum tunings of fractional regulators are obtained, 
the dynamics of transient processes of control action and the state of the purification system is investigated. 
Numerical simulation of fractional  and classical control is carried out, a higher efficiency of fractional PI D  
regulators is shown. 
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Introduction. A fractional calculation deals with derivatives and integrals of random 
order (rational, actual and even complex). R man, Liouville, Grünwald, Litnik [4,5,8] began 
in 17 century a fractional calculation to occupy. But especially actively the theory of 
fractional calculation develops in recent year, and the results of her widely drawn on in the 
areas of research of chaotic dynamics, dynamic neural networks with fractional orders, 
constructing (to the synthesis) of regulators of fractional orders in the theory of automatic 
control and others like that. 

Operator, generalizing classical differential and integral operators, called the operator type 
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where   – order fractional operator (real number); 
a – a constant related to the initial conditions of the dynamic process. 
Operator (1) derivativintehrator is so called because it combines two things at once – 

derivative and integral. 
Formulation of the problem. Traditionally, the theory and practice of automatic 

control is focused on the use of classical differential or integral calculus, it is logical that the 
development of fractional calculus is needed opportunities to study the application of the laws 
of fractional fractional management and building controls and control systems identifying 
characteristics with them. 

The purpose of the article. The article is not only a fractional comparison with 
classic controls and capabilities and efficiency of their application in automatic control, but 
the numerical simulation of control processes purification of contaminated water.  

Presenting main material. This paper considers the problem of numerical modeling 
of process control biological wastewater treatment using activated sludge - regulators 
fractional order. Cleaning system (Fig. 1) consists of a bioreactor- aeration tank and clarifier 
sludge. 

 
 

Figure 1 – Wastewater treatment process 
 

A mathematical model describing water treatment for the scheme is obtained from 
materialbalance for aerator and clarifier as the following system of differential equations. 

Aeration tank s , ax   Clarifier rx  
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where ( )ax t , ( )s t  – according biomass concentration and substrate in the bioreactor;  
( )rx t  – recirculation concentration of biomass;  

D(t) – dilution, defined as D(t) =F(t)/V, where F(t) – volumetric flow rate;  
V – volume bioreactor; 
sin(t) – substrate concentration in the input stream;  
Y – factor output (yield) biomass;  

(t) – biomass specific growth rate, which is defined by Mono [3] 
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s tt
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 ,                                                     (3) 

 
 where max – maximum specific growth rate biomass;  
ks – saturation constant, determined experimentally;  
r,  – coefficients determined in accordance recirculating flow ratio and flow of waste 

biomass to the incoming flow;  
0ax , 0s , 0rx  – according biomass concentration, substrate and recirculation of 

biomass at the initial time t0;  
0t t T , T – end-time process control. 

A value  s(t)  (the concentration of the substrate in the bioreactor, which determines 
the quality of water) is selected as an adjustable parameter (output model). The system 
function dilution D(t)  is selected as controlling influence (action). 

For the convenience the system (2) is written in vector form 
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Adjustable parameter while written as 
2( ) ( ) ( )Ts t x t c x t ,                                                   (6) 

where 0 1 0 Tc . 

Transformed system (4) is linearized in the vicinity of a given nominal control u  and 
corresponding vector equilibrium 1 2 3( , , )Tx x x x , in which ( , ) 0f x u  and which is the 
solution of systems of nonlinear equations ( , ) 0f x u  on vector x. We introduce the notation 
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Then the system of equations linearized model (4) is represented as 
 

0
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                                                     (8) 

 
Considering the ratio (6) and symbols (7), the equation for the controlled variable 

(output model) can be written as                     ( ) ( )Ts t c x t ,                                              (9) 
where  ( ) ( ) Ts t s t c x . 
Model management (8) has one input and one output. Known methods of stabilization 

required parameters is to use regulators in the feedback circuit as part of an automated control 
system. We use fractional PI D - regulator [1,2] and compare its performance with classic 
PID - regulator. 

Similar work [7, 9] PI D - regulators represented as  
 

0 0
( ) ( ) ( ) ( )P I t t D t tu t k s t k D s t k D s t ,                 (10) 

 
where Pk , Ik , Dk  – adjustment coefficients regulator; 

0
( )t tD s t  – fractional derivative order ; 

0
( )t tD s t  – fractional integral of order , moreover ,  – arbitrary real number in 

the interval, ie , (0,2) . If 2  or   2, then PI D  - regulator takes high order, and 
structure it differs from the classical PID - regulator. The controller (10) is a generalized 
fractional - regulator. At =1 and =1 are classic PID - regulator, if =1, =0, we get PI - 
regulator, if =0, =1 have PD - control and in =0, =0 – P - regulator. These types of 
classic PID - regulators are special cases of fractional PI D  - regulator (10). However 
PI D  - regulator is more flexible and has the ability to better regulate (adjust) the dynamic 
properties of control systems. On P I D  - plane, this means that instead of "hops" between 
four fixed points (P, PI, PD  PID (Fig. 2)) the plane is the possibility of continuous 
movement ( PI D ) between them. 
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Figure 2 – P I D  - plane order fractional derivatives and integrals 

 
Fractional derivatives and integrals defined as the limit 
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where 
j

 – binomial coefficients form ( 1)
( 1) ( 1)j j j

, in which ( )x  –  

Euler gamma function view 1

0

( ) y xx e y dy  (recall that in general, x = k it is ( 1) !k k );  

[ ]  – floor and ceiling functions;  
0h  – increase temporal coordinates (quantization). 

If 0 , then correlation (11) defines a fractional derivative, if 0 , then – 
fractional integral. Therefore the relation (11) is also often called derivativintehrator as 
equation (1). Note also that in the entire orders  in (11) will end amount, while fractional  
– an infinite number of members of the series. 

Considering (9), PI D - regulator (10) is written as the operator of the state ( )x t  
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nd criterion as automatic control system functioning biological treatment – 
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where 0p  – option, which in practice is considered equal p =1 (module error) or  

p = 2 (Mean square error). 
For the implementation of this numerical problem of optimal regulation do dedicated 

system (8), fractional PI D - regulator (12) and criterion (13), breaking time interval 0[ , ]t T  
on n parts of step 0( ) /h T t n  (h–during quantization). The points breakdown in 0[ , ]t T  
denote tk, and the state of the system (8) in these times tk – as ( )k kz x t . 

Approximate continuous input ( )u t  piecewise constant function: ( ) ku t u  at 

1k kt t t , 0,1,2,...,k n , using a matrix of linear continuous system (8) and obtain its next 
discrete analog 

PI
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where E – identity matrix, Ahe  – matrix exhibitor. 
Next discrete fractional PI D  - regulator is represented as 
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Note that when k = 0, then a control signal is 
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Quality criterion (13) is written in discrete form
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Numerical simulation of control system of biological treatment search for the optimal 
regulator conducted at the following initial data: 200ins  [mg / l], 0.65Y , max 0.15  

[h-1], 100sk  [mg / l], 0.6r , 0.2 , 0.05u  [h-1], 0 0t , 1T  [h],  
   (8)   0 0 0 0

1 2 3( , , ) (286,  17,  568)T Tx x x x  
[mg / l].  

The method of exhaustive search with a uniform step to solving the problem of 
minimizing the criterion relative 

 

, ,
( , ) min ( , , , , )

P I D
p p P I Dk k k

I J k k k                                   (18) 

 
parameters  and . The results of the optimization method of exhaustive search criteria (18) 
are shown in the table 1. 
 

Table 1 – Best shot settings fractional PI D - and classical PID  -regulators 
p    Pk  Ik  Dk  ( , )pI  

1 1 1 –0.1381 –3.3019 –0.0016 0.0963 
1 0.9750 0.750 –0.2231  0.0072 – 1.0847 10-5 0.0854 
2 1 1 –0.1294 –3.6445 – 0.0015 0.1184 
2 0.9875 0.600 –0.2234  0.0068 – 3.1249 10-6 0.0855 

 
In the pages  and  orders are fractional derivatives and integrals regulators, in pages 

, ,P I Dk k k  – optimal settings of these controls in the last column - the minimum value of the 
criterion (18). Here are the results for comparison to classical optimization PID - regulator 
with 1 and 1. 
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The results show that the objective function value ( , )pI  ( 1p , 2p )  the optimal 

fractional PI D - regulator less than the classic PID - regulator. 
To study surface quality criterion ( , )pI  Fig. 3 shows a graph of the criterion of 

fractional order derivatives ( ) and integrals ( ), used in fractional PI D  - law regulation (15). 

 
Figure 3 – Schedule surface of objective function ( , )pI  

 

With a package system MATLAB Optimization Toolbox following results were 
obtained. Figure 4 graphs optimum control functions (dilution rate of fluid flow) of water in 
biological purification classic PID -  PI D - fractional regulators (15). 

 
Figure 4 – Dynamics optimal fractional PI D  - controllers (speed 

dilution fluid flow) and classic PID-regulator ( 1, 1) 
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Figure 5 shows respective optimal transient (changing substrate concentration) of the 
system by criterion 2 ( , , , , )P I DJ k k k . 

 
Figure 5 – Optimal transient changes in substrate concentration at different fractional PI D -  

and classic PID - regulators 
 
Comparative analysis of  transient dynamics shows more speed and quality with 

optimal damping fractional PI D  - regulator ( 0.965 , 0.5375) compared to the best 
classic PID - regulator ( 1, 1). It is seen that the optimal fractional controllers with 
accurate configuration settings  (fractional order integral) and  (fractional order derivative) 
are more efficient compared to classical PID  - regulator.  

Conclusions. The degree of fractional efficiency regulators and causes high sensitivity 
optimality criterion and transients on the order of fractional derivatives and integrals require 
further research. 
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