ИНВАРИАНТНЫЕ ИНТЕГРАЛЬНЫЕ ХАРАКТЕРИСТИКИ МУЛЬТИСПЕКТРАЛЬНЫХ КОСМИЧЕСКИХ ИЗОБРАЖЕНИЙ

Предложен подход к расчету инвариантных интегральных характеристик растровых изображений. Проведена апробация на данных мультиспектральной космической съемки Terra-ASTER и Landsat-ETM+ участка Донбасса – классификация и интерпретация изображений терриконовых ландшафтов на основе предлагаемых характеристик. Подтверждено преимущество интегральных характеристик в сравнении с необработанными мультиспектральными данными.

Запропонований підхід до розрахунку інваріантних інтегральних характеристик растрових зображень. Проведена апробація на даних мультиспектральної космічної зйомки Terra-ASTER і Landsat-ETM+ території Донбасу – класифікація та інтерпретація зображень териконових ландшафтів на основі запропонованих характеристик. Підтверджена перевага інтегральних характеристик у порівнянні з необробленими мультиспектральними даними.

The approach to invariant integral characteristics calculation of raster images is presented. The approbation on the Terra-ASTER and Landsat-ETM multispectral satellite imagery of the Donbass area is carried out - classification and interpretation of waste bank landscapes images on the basis of the characteristics being proposed. The advantage of integrated characteristics in comparison with raw multispectral data is verified.

Постановка проблемы и анализ публикаций

Для классификации и интерпретации растровых изображений производится расчет множества характеристик. Алгоритмы текстурного анализа изображений обеспечивают определение основных параметров однородных в соответствии с заданным критерием фрагментов космоснимков, характеризующихся свойственными им яркостными и структурными особенностями. Расчет и классификация текстурных характеристик производится в скользящей окрестности для каждого пикселя изображения. Во избежание погрешностей классификации изображений необходим учет их угла поворота и масштаба представления.

Существующие подходы к анализу текстуры изображений делятся на [1, 2]:

– структурный – базирующийся на исследовании особенностей размещения простейших составляющих текстуры – тоновых непроизводных элементов;

 статистический, основанный на расчете статистических характеристик текстуры, таких как центральные моменты нормированной гистограммы яркости изображения, характеристики яркостных матриц смежности, оценки функции вариограммы;

- спектральный, предполагающий анализ Фурье-спектра изображения;

— подход к анализу текстур с позиции бионики определяет необходимость выделения характеристик, наиболее значимых при зрительном восприятии.

Основой для вычисления инвариантных характеристик фрагментов растровых изображений является теория алгебраических инвариантов [3]. Согласно данной теории, расчет характеристик, неизменных при сдвиге, вращении и изменении масштаба, заключается в формировании системы семи инвариантных моментов на основе нормализованных центральных моментов различного порядка [4]. Сложность ее применения – значительные вычислительные затраты при обработке больших наборов данных.

Цель работы – создание инвариантных интегральных характеристик для классификации и интерпретации мультиспектральных космических изображений.

Инвариантные интегральные характеристики

Дано: изображение F размером N×M×L, где N – число строк, M – число столбцов, L – число каналов. Вычисление его характеристик производится в скользящей окрестности S для каждого пикселя изображения.

Пусть $f_{i,j,k}$ – яркость в точке с координатами (i, j) k-го канала изображеимя F, k = 1,...,L; f_k^0 – яркость в центральной точке окрестности S; $d_{i,j,k}^0$ – квадрат евклидова расстояния от точки с координатами (i, j) до центральной точки окрестности S k-го канала изображения F.

Расчет интегральных инвариантных характеристик фрагмента мультиспектрального изображения S размером $n \times m$ ($1 \le n \le N, 1 \le m \le M$) производится по формуле:

$$D(S) = \frac{1}{L} \sum_{k=1}^{L} \left(\frac{\sum_{(i,j)\in S} \left(\left| f_{i,j,k} - f_{k} \right| \cdot d_{i,j,k} \right)}{0} \right)}{\sum_{(i,j)\in S} d_{i,j,k}} \right)$$

Множество характеристик D(S) обладает свойствами инвариантности к повороту, равномасштабному преобразованию и параллельному переносу.

Выбор центральной точки окрестности S определяется решаемой задачей. Центральная точка может соответствовать центру масс фрагмента изображения, точке максимума либо минимума функции яркости и др.

Интегральная инвариантная характеристика для множества участков одного класса $S_0 = \{S_1, ..., S_K\}$:

$$\overline{D}(S_0) = \frac{1}{K} \sum_{S \in S_0} D(S)$$

Полученные значения характеристик подаются на вход процедур классификации.

Классификация и интерпретация мультиспектральных космических изображений Terra-ASTER и Landsat-ETM+ по инвариантным интегральным характеристикам

Общая схема процесса классификации и интерпретации космоснимков, основанного на расчете инвариантных интегральных характеристик, представлена на рис. 1.

Рис. 1. Общая схема процесса классификации и интерпретации мультиспектральных космических изображений

Рассмотрим этапы процесса на примере классификации типов земного покрова промышленных антропогенных ландшафтов Донбасса и выделения горящих терриконов.

1. Предварительная обработка

На этапе предварительной обработки производится подготовка исходных данных к подаче на вход процедур расчета инвариантных характеристик и классификации.

Исходными данными являются пять каналов теплового диапазона электромагнитного спектра (8,13-11,65 мкм) мультиспектрального изображения Terra-ASTER (дата регистрации: 29.07.2005 г.), пять каналов мультиспектрального изображения Landsat-ETM+ (дата регистрации: 09.05.2002 г.) в диапазоне электромагнитного спектра 0,76-12,50 мкм и космические снимки высокого разрешения Internet-сервиса Google, использующиеся для выделения контуров терриконов (рис. 2).

Рис.2. Фрагмент изображения Terra-ASTER городов Донецк, Макеевка и Харцызск с отмеченным расположением терриконов

В исследовании использованы соответственно 15 фрагментов изображения классов "Городская застройка", "Зеленые насаждения" и "Терриконы" (5 горящих и 10 негорящих).

2. Классификация

В табл. 1-2 приведены усредненные значения яркости по каналам изображений Terra-ASTER и Landsat-ETM+, а также результаты расчета инвариантных интегральных характеристик. В качестве центральной выбрана точка максимума яркости. Гистограммы распределения значений инвариантных характеристик фрагментов изображений различных классов представлены на рис. 3.

Рис. 3. Гистограммы инвариантных характеристик фрагментов изображений Terra-ASTER в диапазоне электромагнитного спектра 10,95 – 11,65 мкм для классов: а) "Терриконы" и "Зеленые насаждения";

б) "Терриконы" и Городская застройка".

Таблица 1

Результаты расчета характеристик фрагментов изображений различных классов (Terra-ASTER)

Класс	Номер участка	Инвариантные характеристики								Средняя яркость					
		Terra-ASTER				Landsat-ETM+				Terra-ASTER			Landsat-ETM+		
		Длина волны (мкм)			-	Длина волны (мкм)				Длина волны (мкм)			Длина волны (мкм)		
		8,12-8,48		10,95-11,65	D(S)	0,76-0,90		10,40-12,50	D(S)	8,12-8,48		10,95-11,65	0,76-0,90		10,40-12,50
Терриконы	1	30,3		63,3	48,4	45,1		40,9	41,5	1621,8		1937,6	67,6		170,6
	•••														
	15	18,9		30,3	24,9	42,3		41,4	43,9	1631,6		1939,8	76,1		181,4
Зеленые насаждения	1	14,5		10,8	12,4	7,3		10,5	10,6	1459,6		1739,0	41,0		134,6
	•••														
	15	13,1		17,8	15,4	4,3		5,4	4,9	1452,4		1734,7	38,0		142,6
Городская застройка	1	13,3		9,5	11,1	22,8		13,5	18,9	1548,7		1848,1	64,1		154,3
													•••		
	15	16,5		22,1	19,3	26,9		17,4	22,7	1529,9		1823.3	58,4		159,9

Автоматическая классификация (кластеризация) производилась по методу к-средних на основе евклидова расстояния между множествами характеристик с целью разделения фрагментов изображения различных классов и выделения горящих терриконов [5].

3. Оценка точности классификации

Оценка точности классификации заключалась в расчете ошибок первого и второго рода для класса "Терриконы" (табл.2).

Результаты классификации по интегральным инвариантным характеристикам на 7% лучше, чем по усредненным значениям яркости в каналах изображения (по показателю ошибки первого рода) при кластеризации фрагментов изображения классов "Терриконы" и "Городская застройка" и на 40% – при выявлении негорящих терриконов (по ошибке второго рода).

Таблица 2

		Terra-ASTER		Landsat-ETM+						
	"Терриконы"	"Терриконы"	Горанно и	"Терриконы"	"Терриконы"	Горящие и негорящие терриконы				
Ошибка, %	И	И	т орящие и	И	И					
	"Зеленые на-	"Городская	негорящие	"Зеленые на-	"Городская					
	саждения"	застройка"	терриконы	саждения"	застройка"					
Инвариантные характеристики мультиспектрального изображения										
Ошибка I рода	0	13	20	0	0	20				
Ошибка II рода	0	0	20	0	0	20				
Каналы мультиспектрального изображения										
Ошибка I рода	0	20	20	0	0	20				
Ошибка II рода	0	0	60	0	6	40				

Анализ результатов классификации

Выводы

1. Разработан и реализован подход к расчету интегральных инвариантных характеристик растровых изображений мультиспектральной космической съемки.

2. Результаты экспериментальных исследований подтвердили более высокую точность классификации фрагментов изображения с использованием инвариантных характеристик в сравнении с исходными данными.

Список литературы

1. Бусыгин Б.С., Сергеева Е.Л. Сравнительный анализ двух статистических алгоритмов обработки текстурных изображений // Науковий вісник НГУ. – 2006. – №3. – с.77-83.

2. Хомяков Ю.Н., Саушкин В.А. Методы классификации текстур // Зарубежная радиоэлектроника. – 1986. – №2. – с. 33-46.

3. Hu M.K. Visual pattern recognition by moment invariants // IEEE Transactions on Information Theory. – 1962. – Vol. 8. – No. 2. – pp. 179-187.

4. Бочкарев А.М. Корреляционно-экстремальные системы навигации // Зарубежная радиоэлектроника. – 1981. – № 9. – с. 28 – 53.

5. Шовенгердт Р.А. Дистанционное зондирование. Модели и методы обработки изображений. – М.: Техносфера, 2010. – 560 с.

Рекомендовано до публікації д.т.н. Бусигіним Б.С. Надійшла до редакції 25.10.10