- 3. Waddington C.N. The strategy of the genes / C.N. Waddington. L.: Allen and Uniwin, 1957. 179 p.
- 4. *Захаров В.М.* Онтогенез и популяция (стабильность развития и популяционная изменчивость) / В.М. Захаров. М.: Экология, 2001. 421 с.
- 5. Γ елашвили Д.Б. Статистический анализ флуктуирующей асимметрии билатеральных признаков разноцветной ящурки Eremiasarguta / Д.Б. Гелашвилии [и др.]. Т.: Химия. 2004. 949 с.

Надійшла до редакції 30.01.2013 р. Після доопрацювання 12.02.2013 р.

УДК 621.311.2:628.1

ОЦЕНКА ЭФФЕКТИВНОСТИ ФЛОКУЛЯНТА МАРКИ BESFLOC K051C ДЛЯ ОБРАБОТКИ ВОДЫ РЕКИ СТЫРЬ (РАЭС)

Т.Н. Замыслова¹, Е.А. Магдыч¹, С.А. Федорова¹, И.А. Чугай²

 1 Севастопольский национальный университет ядерной энергии и промышленности $^{2}O\Pi\ PA$ ЭС, г. Кузнецовск

Представлены результаты исследования по оценке эффективности катионного флокулянта марки BESFLOC K051C при проведении предварительной обработки воды реки Стырь (РАЭС).

Ввеление

Подготовка воды на атомной электростанции является важной и ответственной задачей. От качества воды в большой мере зависят надежность и экономичность эксплуатации оборудования.

Многообразие примесей в природной воде служит причиной того, что очистка воды для подпитки контуров и собственных нужд технологических систем электростанций организуется в несколько этапов, первым из которых является предварительная обработка [1].

Основными технологическими процессами предварительной обработки являются коагуляция и известкование, предназначенные для удаления из воды грубодисперсных и коллоидных примесей, снижения щелочности и частичного уменьшения жесткости. Кроме того, предусмотрена дополнительная очистка от грубодисперсных примесей фильтрационными методами [2, 3].

Обработка воды коагулянтами — самый распространенный метод очистки больших объемов воды от грубодисперсных и коллоидных загрязнений. В результате процесса коагуляции и осветления увеличивается прозрачность воды, снижается ее окисляемость и происходит обесцвечивание. При правильно налаженных режимах коагуляции из воды удаляется примерно 60...80 % органических веществ. Кроме того, с применением коагуляции воды значительно ускоряется процесс осаждения взвесей, уменьшается объем сооружений и снижаются капитальные затраты [4].

В технологии очистки природных вод в дополнение к минеральным коагулянтам обычно применяют флокулянты, способствующие расширению оптимальных областей коагуляции (по рН и температуре), повышающие плотность и прочность образующихся хлопьев, снижающие расход коагулянтов, повышающие надежность работы и производительность сооружений очистки вод. Наибольшее распространение получили синтетические флокулянты — органические растворимые в воде высокомолекулярные соединения, молекулярная масса которых может лежать в диапазоне от тысяч до нескольких миллионов атомных единиц [3].

В настоящее время производителями предлагается широкий ассортимент флокулянтов различного типа. Перед принятием решения о применении того или иного реагента следует провести предварительные испытания, целью которых является оценка эффективности реагента для обработки вод конкретного источника водоснабжения.

Постановка цели и задач научного исследования

Цель проведенного исследования - оценка эффективности действия катионного флокулянта марки BESFLOC K051C для обработки воды реки Стырь (РАЭС) и сравнение его с применяемым в настоящее время анионным флокулянтом марки AN 923 SH.

Для достижения поставленной цели необходимо было решить следующие задачи:

- определить ряд показателей качества воды реки Стырь;
- провести пробную коагуляцию воды р. Стырь без применения флокулянта и с использованием флокулянтов маркок BESFLOC K051C и AN 923 SH.

Методика проведения исследования

Исследование проводили в 2 этапа. На первом этапе был определен ряд показателей качества воды р. Стырь. Пробы отбирались в сентябре 2011 г. и в феврале 2012 г. (соответственно в осенний и зимний периоды года). В отобранных пробах определяли величину рН потенциометрическим методом [5]; жесткость, содержание ионов кальция и магния, кислотность, щелочность, перманганатную окисляемость, содержание растворенного кислорода — методом титрования [5]; прозрачность воды определяли по коэффициенту светопропускания нефелометрическим методом [6].

На втором этапе исследовали действие флокулянтов марок BESFLOC K051C и AN 923 SH. Исследуемые флокулянты представляют собой белые гранулированные порошки без запаха, нетоксичные, хорошо растворимые в воде; наиболее эффективные в диапазоне температур 15...30 °C при концентрации рабочего раствора 0,1...0,5 %.

Эффективность флокулянтов сравнивали путем проведения пробной коагуляции, для чего была предложена следующая методика. В ряд мерных цилиндров отбирали по 100 мл исходной воды, доводили рН до 10, добавляли коагулянт FeSO₄, перемешивали и оставляли для образования и осаждения хлопьев. Через равные промежутки времени из верхней части цилиндров отбирали пробу и определяли прозрачность обработанной воды.

Аналогичный опыт проводили с добавлением коагулянта и флокулянта.

Результаты определения показателей качества воды р. Стырь

Результаты определения показателей качества воды р. Стырь приведены в таблице.

показатели качества воды р. Стырь		
Показатель качества	Величина	
	сентябрь 2011 г.	февраль 2012 г.
рН, ед.	$7,9 \pm 0,1$	$7,4 \pm 0,2$
Кислотность, мг-экв/дм ³	$0,20 \pm 0,00$	$0,12 \pm 0,01$
Щелочность гидрокарбонатная, мг-экв/дм ³	$0,65 \pm 0,00$	$1,37 \pm 0,07$
Жесткость общая, мг-экв/дм ³	$5,97 \pm 0,14$	$5,50 \pm 0,28$
Жесткость временная, мг-экв/дм ³	$4,93 \pm 0,29$	$4,40 \pm 0,25$
Жесткость постоянная, мг-экв/дм ³	$1,03 \pm 0,04$	$1,10 \pm 0,10$
Содержание ионов кальция, мг/дм ³	$101,33 \pm 5,96$	$88,87 \pm 5,74$
Содержание ионов магния, мг/дм ³	$11,20 \pm 1,44$	$12,97 \pm 0,95$
Перманганатная окисляемость, мгO ₂ /дм ³	$34,27 \pm 0,57$	$46,2 \pm 0,5$
Содержание растворенного кислорода, мг/дм ³	$1,50 \pm 0,05$	$8,30 \pm 0,88$
Прозрачность, %	$61,3 \pm 0,0$	$66,2 \pm 0,0$

Таблица Показатели качества волы р. Стырь

Можно отметить, что исследуемая вода характеризуется гидрокарбонатной щелочностью, по классификации вод по жесткости относится к водам средней жесткости [7], при этом содержание ионов кальция практически в 7-9 раз (в зависимости от периода года) выше содержания ионов магния. Прозрачность воды составляет 61,3 % и 66,2 % соответственно для осеннего и зимнего периодов, что говорит о наличии взвешенных и коллоидных частиц, значительная часть которых представлена, повидимому, органическими соединениями, о чем свидетельствует высокое значение перманганатной окисляемости (34,27 мг O_2 /л и 46,2 мг O_2 /л соответственно для осеннего и зимнего периодов).

Следует отметить также, что содержание растворенного кислорода в сентябре в 5,5 раз ниже, чем в феврале, что, видимо, связано с более высокой температурой воды осенью.

Результаты пробной коагуляции воды р. Стырь

По результатам проведения пробной коагуляции построили графики зависимости прозрачности обработанной воды от времени обработки при использовании только коагулянта и при одновременном использовании коагулянта и флокулянтов AN 923 SH (рис. 1) и BESFLOC K051C (рис. 2).

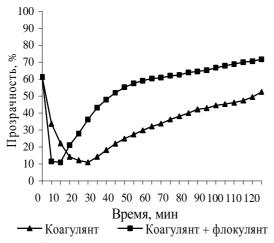


Рис. 1. Зависимость изменения прозрачности воды от времени при обработке коагулянтом и флокулянтом марки AN 923 SH

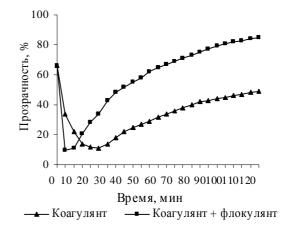


Рис. 2. Зависимость изменения прозрачности воды от времени при обработке коагулянтом и флокулянтом марки BESFLOC K051C

Следует отметить, что как в случае применения только коагулянта, так и в случае одновременного использования коагулянта и флокулянта в первые минуты эксперимента произошло значительное уменьшение прозрачности воды. Данное явление наблюдалось и при использовании флокулянта марки AN 923 SH, и при использовании флокулянта марки BESFLOC K051C. Это связано с образованием в объеме хлопьев коагулята.

В дальнейшем при осаждении твердой фазы прозрачность воды увеличивалась, однако при использовании флокулянтов образование твердой фазы и ее осаждение происходило значительно быстрее. Так, в присутствии флокулянтов увеличение прозрачности воды наблюдали уже после 10 мин от начала эксперимента, в то время как в пробах без флокулянта – только через 30 мин.

Прозрачность воды в пробах с флокулянтом по окончании эксперимента составила 71,7 % и 86,0 % (для флокулянтов марок AN 923 SH и BESFLOC K051C соответственно), что практически в 1,4-1,8 раз выше, чем в пробах без флокулянта.

Вместе с тем следует отметить, что при использовании флокулянта марки BESFLOC K051C осветление воды произошло в большей степени, чем при использовании флокулянта марки AN 923 SH. Так, в случае флокулянта марки AN 923 SH прозрачность воды изменилась с 61,3 % до 71,7 % (на 16,9 %), а в случае флокулянта марки BESFLOC K051C – с 66,2 % до 86,0 % (на 29,9 %).

Выводы

- 1. Необходимость предварительной обработки воды р. Стырь обусловлена наличием грубодисперсных и коллоидных примесей, о чем свидетельствует низкая прозрачность (66,2 % в зимний сезон и 61,3 % в осенний).
- 2. Результаты пробной коагуляции с применением флокулянтов марок AN 923 SH и BESFLOC K051C свидетельствуют об эффективности исследуемых флокулянтов, однако при использовании флокулянта марки BESFLOC K051C достигается более высокая степень осветления воды.

ОЦІНКА ЕФЕКТИВНОСТІ ФЛОКУЛЯНТА МАРКИ BESFLOC K051C ДЛЯ ОБРОБКИ ВОДИ РІКИ СТИР (PAEC)

Т.М. Замислова, К.О. Магдич, С.О. Федорова, І.А. Чугай

Надані результати дослідження ефективності катіонного флокулянта марки BESFLOC K051C при проведенні попередньої обробки води ріки Стір (PAEC).

FLOCCULANT POTENCY ASSIGNMENT of the «BESFLOC K051C» BRAND for the STYR RIVER (RNPP) WATER TREATMENT

T. Zamyslova, E. Magdych, S. Fedorova, I. Chugay

The researches of the «BESFLOC K051C» brand' cationic flocculants potency during the pretreatment of the Styr river water (RNPP) have been resulted.

Список использованных источников

- 1. *Стерман Л.С.* Физическикие и химические методы обработки воды на ТЭС / Л.С. Стерман, В.Н. Покровский М.: Атомэнергоиздат, 1991. 206 с.
- 2. Акимов А.М. Системы и оборудование химических цехов АЭС / А.М. Акимов, А.В. Кулибов, А.А. Кузьмин. Севастополь: СНИЯЭиП, 2002. 238 с.

- 3. *Фрог Б.Н.* Водоподготовка / Б.Н. Фрог, А.П. Левченко. М.: МГУ, 1996. 53 с.
- 4. *Вихрев В.Ф.* Водоподготовка / В.Ф. Вихрев, М.С. Шкроб. М.: Энергия, 1973. 416 с.
- 5. Замыслова Т.Н. Химическая технология теплоносителя на АЭС / Т.Н. Замыслова. Севастополь: СНУЯЭиП, 2012. 84 с.
- 6. Введение в аналитическую химию и физико-химические методы анализа: пособие для обучаемого. Нетешин: Изд-во Хмельницкой АЭС, 1997. 255 с.
- 7. Водоподготовка: справочник / Под ред. С.Е. Беликова. М.: Аква-Терм, 2007. 240 с.

Надійшла до редакції 01.03.2013 р.

УДК 004.942.3

ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ГИДРОТЕРМИЧЕСКОГО РЕЖИМА ВОДОЕМОВ-ОХЛАДИТЕЛЕЙ АЭС

В.А. Мороз¹, Р.В. Беженар², Г.И. Наземцева³

¹Научно-технический центр НАЭК «Энергоатом», г. Киев ²Институт проблем математических машин и систем, г. Киев ³Севастопольский национальный университет ядерной энергии и промышленности

Произведен сравнительный анализ математических моделей теплообмена в системе «вода - атмосфера» в целях выбора наиболее точной сходимости с данными измерений. Показано, что расхождение между расчетными значениями поверхностной температуры воды и экспериментальными данными существенно зависит от применяемой модели теплообмена воды с атмосферой. Приведены результаты моделирования гидротермического режима пруда-охладителя Запорожской АЭС.

Введение

Характерной особенностью водоемов-охладителей (ВО) АЭС может оказаться снижение уровня воды (осушение) в результате прекращения подпитки. Доказательством послужила аварийная ситуация, произошедшая в декабре 2011 г. на Запорожской ТЭС. В результате порыва циркуляционных водоводов диаметром 1800 мм и отключения циркуляционных насосов на блочной насосной станции сработала система технологической защиты, вследствие чего были отключены работающие второй и четвертый блоки тепловой станции. Так как система технического водоснабжения ЗАЭС взаимосвязана с эксплуатацией ЗаТЭС, в результате временной остановки ТЭС была прекращена подпитка пруда-охладителя Запорожской АЭС.

Учитывая высокую квалификацию персонала Запорожской АЭС и своевременное принятие мер по преодолению внештатной ситуации, удалось продолжить работу с наименьшими потерями.

Данный инцидент произошел в зимний период времени, но если бы аварийная ситуация произошла в летний период, то ущерба было бы больше. В случае прекращения подпитки пруда-охладителя изменился бы не только гидротермический режим, но и гидрохимический, скорость которого зависит от температуры.