- 3. Про виключну (морську) економічну зону України: Закон України [Электронный ресурс]. - Режим доступа: www.nbuv.gov.ua.
- 4. Азаренко Е.В. Проблема управления экологической безопасностью прибрежных вод и пути ее решения / Е.В. Азаренко, Ю.Ю. Гончаренко, М.М. Дивизинюк // Системи обробки інформації: зб. наук. пр. – Харків: Харк. ун-т Повітр. Сил ім. І. Кожедуба, 2012. – Вип. 2 (100). – С. 271 – 275.
- 5. Дивизинюк М.М. Акустические поля Черного моря: монография / М.М. Дивизинюк. – Севастополь: НИЦ «Гос. океанариум» МО и НАНУ, 1998. – 352 с.
- 6. Дивизинюк М.М. Характеристика видов мониторинга в Азово-Черноморском регионе / М.М. Дивизинюк, Е.В. Азаренко, А.В. Прохорова, О.Т. Ильюхина // Сб. науч. тр. СНИЯЭиП. – Севастополь: СНИЯЭиП, 2005. – Вып. 16. – С. 76 – 79.
- 7. Дивизинюк М.М. Воздействие гидрометеорологических факторов на гидрофизические и антропогенные характеристики слоя вод Черного моря / М.М. Дивизинюк [и др.] // Зб. наук. пр. СНУЯУтаП. – Севастополь, СНУЯЭиП, 2008. – Вып. 1 (25). – С. 74 – 78.
- 8. Гончаренко Ю.Ю. Подсистема экологического мониторинга морских вод внешних рейдов портов и портпунктов / Ю.Ю. Гончаренко, В.Н. Григорьева, М.М. Дивизинюк, М.И. Ожиганова // Системы контроля окружающей среды: сб. науч. тр. МГИ НАН Украины. – Вып. 13. – Севастополь: МГИ, 2010. – С. 30 – 34.

Надійшла до редакції 16.12.2013 р.

УДК 628.345.004.14

ВЛИЯНИЕ КОНЦЕНТРАЦИИ ИЗВЕСТИ НА ОЧИСТКУ СТОЧНОЙ ВОДЫ СТАДИИ СОПОЛИМЕРИЗАЦИИ СТИРОЛА И ДИВИНИЛБЕНЗОЛА ПРЕДПРИЯТИЙ ПО ПРОИЗВОДСТВУ ИОНООБМЕННЫХ СМОЛ

Е.А. Храброва¹, препод., Ю.А. Омельчук¹, к.х.н., доц., Н.Д. Гомеля², д.т.н., проф.

¹Севастопольский национальный университет ядерной энергии и промышленности; 2 Национальный технический университет Украины «Киевский политехнический институт»

Приведены результаты исследований по влиянию концентрации извести на очистку сточных вод, образующихся при производстве ионообменных смол. Установлено, что известь в дозе 4...6 г/дм³ может быть использована для эффективной очистки сточных вод стадии сополимеризации стирола и дивинилбензола.

Введение

Очистка сточных вод производства ионообменных смол на сегодняшний день является сложной и актуальной проблемой, так как изменились условия хранения непереработанных отходов. Ранее такие отходы можно было вывезти на общезаводское хранилище, а в настоящее время их можно помещать только в хранилища предприятия, где они производятся, которые имеют ограниченный объем.

Одним из видов жидких отходов в производстве ионообменных смол являются отходы, образующиеся на стадиях сополимеризации стирола и дивинилбензола (маточник после промывки и отжима). Маточник, полученный на стадии сополимеризации, представляет собой стабильную коллоидную смесь, в которой коллоидные частицы состоят в основном из примесей стирола, низкомолекулярных олигомеров, катализатора и характеризуется высокой мутностью и высоким значением ХПК.

Для обеззараживания сточных вод, содержащих нерастворимые примеси, широко используется негашеная известь (технический оксид кальция). Известь наряду с повышением щелочности и рН среды обеспечивает в процессе взаимодействия с водой и увеличение температуры, способствует повышению эффективности коагуляции и флокуляции взвешенных частиц за счет перезарядки их поверхности и разделению фаз [1].

Известно, что ионы тяжелых металлов способны образовывать малорастворимые гидроксиды в нейтральных или слабощелочных средах. Поэтому шлак Оскольского электрометаллургического комбината, в состав которого входит CaO, используют при очистке сточных вод, так как при его добавлении значительно увеличивается рН среды с образованием малорастворимых гидроксидов металлов [2].

Авторы [3] используют негашеную известь в качестве щелочного реагента для снижения солесодержания шахтных вод в комплексной очистке сточных вод от урана.

Ранее проводились исследования по очистке маточника со стадии сополимеризации методами флотации, коагулирования и фильтрования. В процессе флотации использовали ряд катионных флокулянтов на основе полиэтиленамина, полигексаметилена, полигуанидингидрохлорида, катионированного полиакриламида и анионных флокулянтов на основе гидролизованного полиакриламида, а также гидроксоалюмината натрия в качестве коагулянта. При осветлении данного маточника в отдельных пробах проводилась окислительная деструкция поверхностно активных веществ (ПАВ) лиофильного характера с использованем перекиси водорода. Поскольку использование данных методов было малоэффективным, для частичной деструкции ПАВ была использована известь [4].

Проведенные исследования [4] показали, что при добавлении извести к сточной воде со стадии сополимеризации стирола и дивинилбензола эффективно удаляются нерастворимые коллоидные примеси.

При использовании извести уже при комнатной температуре происходит гидролиз сложноэфирных групп модифицированной целлюлозы с получением малорастворимых солей карбоновых кислот с кальцием:

$$2\Pi$$
-CH₂COOCH₃ + Ca(OH)₂ \rightarrow [Π -CH₂COO]₂Ca + 2CH₃OH,

где П – элемент гликозидного кольца молекулы целлюлозы.

Постановка цели и задач научного исследования

Целью работы являлось определение оптимальной концентрации извести для очистки сточной воды стадии сополимеризации стирола и дивинилбензола предприятий по производству ионообменных смол.

Для достижения поставленной цели решалась задача по оценке влияния расхода извести, условий эксперимента, выбранных методов очистки на степень осветления и уровень ХПК сточной воды стадии сополимеризации производства ионообменных смол.

Результаты исследования

В качестве объекта исследования использовали кубовый остаток маточника со стадии сополимеризации стирола и дивинилбензола, характеризующийся высокой мутностью 2200 мг/дм³ (по SiO₂) и XПК ~ 10240 мг O_2 /дм³.

Для проведения исследований использовали известь в дозах $1...10 \, \text{г/дм}^3$.

В сточную воду стадии сополимеризации стирола и дивинилбензола объемом 200 см³ добавляли эмульсию извести с концентрацией 1...10 г/дм³, раствор отстаивали 3 часа, фильтровали через фильтр «синяя лента», измеряли мутность (M₁), затем пропускали через раствор углекислый газ до рН = 8...8,5, осадок отфильтровывали через фильтр «синяя лента», измеряли мутность (M₂) и химическое потребление кислорода $(X\Pi K_1)$. В отдельных случаях часть раствора пропускали через активированный уголь. Расход воды через колонку составил 10 см³/мин. В фильтрате определяли мутность (М₃) и ХПК₂. Другие пробы воды подвергали электролизу в однокамерном электролизёре, содержащем 300 мг/дм 3 хлоридов и сульфатов. После определения ХПК $_3$ раствор пропускали через активированный уголь, измеряли ХПК₄ и мутность (М₄).

Результаты эксперимента представлены в табл. 1 и 2.

Таблица 1 Эффективность очистки маточника со стадии сополимеризации стирола и дивинилбензола $(M = 2200 \text{ мг/дм}^3, X\Pi K = 10240 \text{ мг} O_2/дм^3)$ в зависимости от концентрации извести

No	Доза СаО,	Мутность по SiO_2 , мг/дм ³				Степень осветления, %			
Π/Π	г/дм ³	I	II	III	IV	I	II	III	IV
1	1	2662,5	2237,7	2250	2510	_	-	-	_
2	2	427,5	500	1450	1308	80,56	77,27	34,09	40,55
3	3	135	135	134	101	93,86	93,86	93,91	95,41
4	4	17	17	2,5	2,5	99,23	99,23	99,89	99,89
5	5	17	12	2,5	2,5	99,23	99,45	99,89	99,89
6	6	24	0	0	25	98,91	100,00	100,00	98,86
7	7	15,8	0	0	17	99,28	100,00	100,00	99,23
8	8	10,3	0	0	16	99,53	100,00	100,00	99,27
9	9	10	0	0	15,3	99,55	100,00	100,00	99,30
10	10	9	0	0	11	99,59	100,00	100,00	99,50

Примечание. I – после обработки CaO, отстаивания и фильтрования; II – после обработки СаО, отстаивания, фильтрования, обработки СО₂, фильтрования; III – после обработки СаО. отстаивания, фильтрования, обработки СО2, фильтрования и пропускания через активированный уголь, IV – после обработки CaO, отстаивания и фильтрования, обработки CO₂, фильтрования, электролиза, пропускания через активированный уголь.

Как видно из табл. 1, добавление извести в концентрации 1 г/дм³ положительных результатов не дало, наоборот, мутность раствора увеличилась. При добавлении извести в концентрации 2 г/дм³ улучшило результат осветления до 80,56 % на первой стадии, но при извлечении ионов кальция из раствора с помощью углекислого газа результат по мутности несколько снизился до 77,27 %, а после доочистки растворов с помощью активированного угля и методом электролиза ухудшило полученный ранее результат. Добавление извести в концентрации 3 г/дм³ дало положительный результат по степени осветления - 93,86 %. Извлечение из раствора ионов кальция не повлияло на степень осветления. Доочистка на активированном угле заметных улучшений не показала, на 1,5 % улучшился результат во время доочистки раствора электролизом. Обработка раствора 4 г/дм³ извести существенно повлияла на мутность раствора. Мутность снизилась с 2200 мг/дм³ до 17 мг/дм³, степень осветления при этом на первом и втором этапе очистки увеличилась до 99,23 %. Доочистка на активированном угле и электролизом обеспечила повышение степени осветления до 99,89 % и снижение мутности до 2,5 г/дм³. Дальнейшее повышение дозы незначительно обеспечивало повышение эффективности осветления на первом этапе. При дальнейшем повышении дозы извести при обработке раствора углекислотой и фильтровании через активированный уголь достигли полного осветления воды. Но после электролиза мутность повышалась до 11...25 мг/дм³, что, вероятно, обусловлено образованием коллоидных примесей в результате электролиза. Как показали дальнейшие исследования, добавление извести в концентрации больше 6 г/дм³ не имеет смысла, так как данная доза обеспечивает полное осветление воды при обработке ее после известкования и углекислым газом.

 $T\ a\ б\ \pi\ u\ ц\ a\ 2$ Зависимость очистки маточника со стадии сополимеризации стирола и дивинилбензола $(M=2200\ \text{мг/дм}^3, X\Pi K=10240\ \text{мг}\ O_2/\text{дм}^3)\ от\ концентрации извести$

No	Доза СаО,	XПК, мг O_2 /дм 3				Степень очистки, %			
п/п	г/дм ³	I	II	III	IV	I	II	III	IV
1	1	8833	7424	256	163,84	13,74	27,50	97,50	98,40
2	2	5427	4275,2	1045	860	47,00	58,25	89,79	91,60
3	3	2128	1968	450,6	396	79,22	80,78	95,60	96,13
4	4	582	553	409,6	368	94,32	94,60	96,00	96,40
5	5	512	328	338	409,6	95,00	96,80	96,70	96,00
6	6	492	410	271	409,6	95,20	95,00	97,35	96,00
7	7	580	399	276	307,2	94,34	96,10	97,30	97,00
8	8	563	399	235	307,2	94,50	96,10	97,71	97,00
9	9	576	358,4	217	245,76	94,38	96,50	97,88	97,60
10	10	576	487,4	472	409,6	94,38	95,24	95,39	96,00

Примечание. I — после обработки CaO, отстаивания и фильтрования, обработки CO_2 , фильтрования; II — после обработки CaO, отстаивания и фильтрования, обработки CO_2 , фильтрования, пропускания через активированный уголь; III — после обработки CaO, отстаивания и фильтрования, обработки CO_2 , фильтрования, электролиза; IV — после обработки CaO, отстаивания и фильтрования, обработки CO_2 , фильтрования, электролиза, пропускания через активированный уголь.

Согласно результатам табл. 2, наибольшее количество органических соединений извлеклось из раствора при добавлении 1 г/дм³ извести и доочистке воды методом электролиза. Степень очистки составила 98,4 %. Но в данном случае значение мутности было выше, чем в исходном растворе. Вероятно, увеличение мутности было вызвано наличием в растворе мелкодисперсного осадка извести, который очень плохо отфильтровывался, даже при использовании вакуума. При добавлении извести в концентрациях 2...4 г/дм³ наблюдалось значительное снижение ХПК и улучшение степени очистки уже на первом этапе обработки воды. Доочистка на активированном угле и электролизом показала степень очистки в 91,6 %, 96 % и 96,4 % соответственно. При добавлении 5...10 г/дм³ извести уже на первом и втором этапах степень очистки достигла 95...96,8 %. При добавлении извести в концентрации 9 г/дм³ при доочистке на активированном угле степень очистки достигла 97,88 %. В целом можно сказать, что при добавлении извести от 4 г/дм³ позволяет снизить ХПК до нормы, позволяющей сброс очищенной сточной воды в гидрографическую сеть.

Выводы

Установлено, что при добавлении эмульсии извести в дозе 4...5 г/дм³, с последующей доочисткой воды на активированном угле можно очистить воду стадии сополимеризации стирола и дивинилбензола до норм, позволяющих сброс воды в гидрографическую сеть.

Добавление эмульсии извести в дозе 6 г/дм 3 позволяет очистить воду от мутности на 100 % и на 96 % от органических примесей.

ВПЛИВ КОНЦЕНТРАЦІЇ ВАПНА НА ОЧИЩЕННЯ СТІЧНОЇ ВОДИ СТАДІЇ СОПОЛІМЕРИЗАЦІЇ СТИРОЛУ І ДИВІНІЛЬЕНЗОЛУ ПІДПРИЄМСТВ З ВИРОБНИЦТВА ІОНООБМІННИХ СМОЛ

О.А. Храброва, Ю.А. Омельчук, М.Д. Гомеля

Приведено результати досліджень впливу концентрації вапна на очищення стічних вод, що утворюються при виробництві іонообмінних смол. Визначено, що вапно в дозі 4...6 г/дм³ може бути використано для ефективного очищення стічних вод стадії сополімеризації стиролу і дивінілбензолу.

LIME CONCENTRATION INFLUENCE on the WASTEWATER PURIFICATION in the COPOLIMERAZION STAGE of STYRENE-D and DIVINYLBENZOL for the ION-EXCHANGE RESIN MANUFACTURERS

E. Khrabrova, Yu. Omelchyk, N. Gomelya

The study of lime concentration influence on the wastewater purification of ion-exchange resin manufacturers has been resulted. The lime concentration of $4...6 \text{ g/dm}^3$ is determined to be used for the effective wastewater purification at the styrene-divinylbenzene copolymerization stage.

Список использованных источников

- 1. *Гуляева И.С.* Анализ и обоснование методов обезвреживания и утилизации осадков сточных вод биологических очистных сооружений / И.С. Гуляева [и др.] // Вестн. ПНИПУ. Сер. Охрана окружающей среды, транспорт, безопасность жизнедеятельности. Пермь: ПГТУ, 2012. № 2. С. 18 32.
- 2. Свергузова С.В. Комплексное обезвреживание сточных вод, утилизация осадков водоочистки и вторичное использование гипсо- и металлсодержащих промышленных отходов: дис. ... д-ра техн. наук: 03.00.16: защищена 01.10.2008: утв. 23.01.2009 / Свергузова Светлана Васильевна. Казань: Казан. гос. технол. ун-т, 2008. 514 с. РГБ ОД, 71 09-5/220.
- 3. *Тимошенко Т.Г.* Очистка радиоактивно загрязненных вод с повышенным солесодержанием / Т.Г. Тимошенко, А.А. Боголепов, Г.Н. Пшинко // Химия и технология воды. К.: Ин-т коллоидной химии и химии воды им. А.В. Думанского НАН Украины, 2009. T. 31. № 1. C. 78 88.
- 4. *Храброва Е.А.* Применение коагулянтов и флокулянтов для очистки сточных вод предприятий по производству ионообменных смол / Е.А. Храброва, Ю.А. Омельчук, Н.Д. Гомеля // Зб. наук. пр. СНУЯЭиП. Севастополь: СНУЯЭиП, 2012. Вып. 4 (44). С. 102 109.