Durdiev D. K. Problem of determining a multidimensional thermal memory in a heat conductivity equation / D. K. Durdiev, Zh. Zh. Zhumayev // Methods of Functional Analysis and Topology. - 2019. - 25, № 3. - С. 218-225. - Бібліогр.: 19 назв. - англ.We consider a multidimensional integro-differential equation of heat conductivity with time-convolution integral in the right hand-side. The direct problem is represented by the Cauchy problem of determining the temperature of the medium for a known initial distribution of heat. We study the inverse problem of determining the kernel, in the integral part, that depends on time and spatial variables, if a solution of the direct problem is known on the hyperplane xn = 0 for t >> 0. With a use of the resolvent of the kernel, this problem is reduced to a study of a more convenient inverse problem. The later problem is replaced with an equivalent system of integral equations with respect to the unknown functions and, using a contractive mapping, we prove that the direct and the inverse problems have unique solutions. Індекс рубрикатора НБУВ: В161.74
Рубрики:
Шифр НБУВ: Ж41243 Пошук видання у каталогах НБУВ
 Якщо, ви не знайшли інформацію про автора(ів) публікації, маєте бажання виправити або відобразити більш докладну інформацію про науковців України запрошуємо заповнити "Анкету науковця"
|