РЕФЕРАТИВНА БАЗА ДАНИХ "УКРАЇНІКА НАУКОВА"
Abstract database «Ukrainica Scientific»


Бази даних


Реферативна база даних - результати пошуку


Вид пошуку
Пошуковий запит: (<.>ID=REF-0000806339<.>)
Загальна кількість знайдених документів : 1

Suprunenko M. K. 
Information-extreme machine learning of wrist prosthesis control system based on the sparse training matrix / M. K. Suprunenko, O. P. Zborshchyk, O. Sokolov // J. of Eng. Sciences. - 2022. - 9, № 2. - С. E28-E35. - Бібліогр.: 17 назв. - англ.

The article considers the problem of machine learning of a wrist prosthesis control system with a non-invasive biosignal reading system. The task is solved within the framework of information-extreme intelligent data analysis technology, which is based on maximizing the system's information productivity in machine learning. The idea of information-extreme machine learning of the control system for recognition of electromyographic biosignals, as in artificial neural networks, consists in adapting the input information description to the maximum total probability of making correct classification decisions. However, unlike neuro-like structures, the proposed method was developed within a functional approach to modeling the cognitive processes of the natural intelligence of forming and making classification decisions. As a result, the proposed method acquires the properties of adaptability to the intersection of classes in the space of recognition features and flexibility when retraining the system due to the recognition class alphabet expansion. In addition, the decision rules constructed within the framework of the geometric approach are practically invariant to the multidimensionality of the space of recognition features. The difference between the developed method and the well-known methods of information-extreme machine learning is the use of a sparse training matrix, which allows for reducing the degree of intersection of recognition classes significantly. The optimization parameter of the input information description, the training dataset, is the quantization level of electromyographic biosignals. As an optimization criterion is considered the modified Kullback information measure. The proposed machine learning algorithm results are shown in the example of recognition of six finger movements and wrist.


Індекс рубрикатора НБУВ: Р458.286.46

Шифр НБУВ: Ж101239 Пошук видання у каталогах НБУВ 
Повний текст  Наукова періодика України 
Додаткова інформація про автора(ів) публікації:
(cписок формується автоматично, до списку можуть бути включені персоналії з подібними іменами або однофамільці)
  Якщо, ви не знайшли інформацію про автора(ів) публікації, маєте бажання виправити або відобразити більш докладну інформацію про науковців України запрошуємо заповнити "Анкету науковця"
 
Національна бібліотека України імені В. І. Вернадського
Відділ наукового формування національних реферативних ресурсів
Інститут проблем реєстрації інформації НАН України

Всі права захищені © Національна бібліотека України імені В. І. Вернадського