РЕФЕРАТИВНА БАЗА ДАНИХ "УКРАЇНІКА НАУКОВА"
Abstract database «Ukrainica Scientific»


Бази даних


Реферативна база даних - результати пошуку


Вид пошуку
Пошуковий запит: (<.>ID=REF-0000810584<.>)
Загальна кількість знайдених документів : 1

Drin Ya. M. 
The nonlocal problem for fractal diffusion equation / Ya. M. Drin, I. I. Drin, S. S. Drin // Проблеми керування та інформатики. - 2022. - № 1. - С. 47-55. - Бібліогр.: 4 назв. - англ.

Over the past few decades, the theory of pseudodifferential operators (PDO) and equations with such operators (PDE) has been intensively developed. The authors of a new direction in the theory of PDE, which they called parabolic PDE with non-smooth homogeneous symbols (PPDE), are Ya. Drin and S. Eidelman. In the early 1970s, they constructed an example of the Cauchy problem for a modified heat equation containing, instead of the Laplace operator, PDO, which is its square root. Such a PDO has a homogeneous symbol |<$E sigma>|, which is not smooth at the origin. The fundamental solution of the Cauchy problem (FSCP) for such an equation is an exact power function. For the heat equation, FSCP is an exact exponential function. The Laplace operator can be interpreted as a PDO with a smooth homogeneous symbol |<$E sigma>|^2, <$E sigma~symbol <174>~roman Rn>. A generalization of the heat equation is PPDE containing PDO with homogeneous non-smooth symbols. They have an important application in the theory of random processes, in particular, in the construction of discontinuous Markov processes with generators of integro-differential operators, which are related to PDO; in the modern theory of fractals, which has recently been rapidly developing. If the PDO symbol does not depend on spatial coordinates, then the Cauchy problem for PPDE is correctly solvable in the space of distribution-type generalized functions. In this case, the solution is written as a convolution of the FSCP with an initial generalized function. These results belong to a number of domestic and foreign mathematicians, in particular S. Eidelman and Y. Drin (who were the first to define PPDO with non-smooth symbols and began the study of the Cauchy problem for the corresponding PPDE), M. Fedoruk, A. Kochubey, V. Gorodetsky, V . Litovchenko and others. For certain new classes of PPDE, the correct solvability of the Cauchy problem in the space of Holder functions has been proved, classical FSCP have been constructed, and exact estimates of their power-law derivatives have been obtained [1 - 4]. Of fundamental importance is the interpretation of PDO proposed by A. Kochubey in terms of hypersingular integrals (HSI). At the same time, the HSI symbol is constructed from the known PDO symbol and vice versa [6]. The theory of HSI, which significantly extend the class of PDO, was developed by S. Samko [7]. We extends this concept to matrix HSI [5]. Generalizations of the Cauchy problem are non-local multipoint problems with respect to the time variable and the problem with argument deviation. Here we prove the solvability of a nonlocal problem using the method of steps. We consider an evolutionary nonlinear equation with a regularized fractal fractional derivative <$E alpha~symbol <174>~(0,~1]> with respect to the time variable and a general elliptic operator with variable coefficients with respect to the second-order spatial variable. Such equations describe fractal properties in real processes characterized by turbulence, in hydrology, ecology, geophysics, environment pollution, economics and finance.


Індекс рубрикатора НБУВ: В162.13

Рубрики:

Шифр НБУВ: Ж26990 Пошук видання у каталогах НБУВ 
Повний текст  Наукова періодика України 
  Якщо, ви не знайшли інформацію про автора(ів) публікації, маєте бажання виправити або відобразити більш докладну інформацію про науковців України запрошуємо заповнити "Анкету науковця"
 
Національна бібліотека України імені В. І. Вернадського
Відділ наукового формування національних реферативних ресурсів
Інститут проблем реєстрації інформації НАН України

Всі права захищені © Національна бібліотека України імені В. І. Вернадського